Novel Dithiols as Capping Ligands for CdSe Quantum Dots: Optical Properties and Solar Cell Applications

Avvaru Praveen Kumar,† Bui The Huy,‡‡ Begari Prem Kumar,† Jong Hwa Kim,† Dao Van Duong,§ Ho-Suk Choi,§ and Yong-Ill Lee†*

†Department of Chemistry, Changwon National University, Changwon 641-773, Korea.
‡Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 2 Hung Vuong, Nhatrang, Vietnam.
§Department of Chemical Engineering, Chungnam National University, Daejeon, Korea.

Supporting Information

Scheme S1. Synthesis of dithiols.

Figure S2. FT-IR spectra of DT-capped CdSe QDs.

Figure S3. TGA curves of CdSe and DT-capped CdSe QDs.

Figure S4. The temporal evolution time of the absorption spectra of DT-capped CdSe QDs.

Figure S5. Comparison of PL intensities of CdSe and DT-capped CdSe QDs.

Figure S6. Photocurrent density-voltage curves of QD solar cells containing DT-capped CdSe.
Scheme S1. Synthesis of dithiols.
Figure S2. FT-IR spectra of DT-capped CdSe QDs.

Figure S3. TGA curves of CdSe and DT-capped CdSe QDs.
Figure S4. The temporal evolution time of the absorption spectra of DT-capped CdSe QDs.
Figure S5. Comparison of PL intensities of CdSe and DT-capped CdSe QDs.

Figure S6. Photocurrent density-voltage curves of QD solar cells containing DT-capped CdSe.