Electronic Supplementary Information for

Alkylsilane functionalized perylenediimide derivatives with differential gas sensing properties

Yongwei Huang, a Weiguang Zhang, a Haiyan Zhai a and Chunli Li b

a Medical College, Henan University, Kaifeng 475004, China

b Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, China
1. Synthesis of DMB, TMSA, TESA and TPSA

\textbf{N,N’-bis(n-hexadecyl)-1,7-di(3,3-dimethyl-1-butynyl)perylene-3,4,9,10-tetracarboxyl diimide (DMB).} \ N, N’-bis(n-hexadecyl)-1,7-dibromoperylene-3,4,9,10-tetracarboxyldiimide (0.12 g, 0.13 mmol), 3,3-Dimethyl-butyne (0.70 g, 0.86 mmol), [Pd(PPh_3)_4] (0.02 g, 0.02 mmol) and CuI were stirred in a mixture of 15 mL of triethylamine and 15 mL of THF for 14 h at 53 °C under argon atmosphere. The mixture was cooled to room temperature and diluted with CH_2Cl_2. The organic layer was washed three times with water to neutral, dried with Na_2SO_4, and the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/CH_2Cl_2, 1:1) to yield the red product 0.11 g (86%). ^1H NMR (CDCl_3, 400 MHz) \(\delta \) (ppm): 0.85–0.89 (m, 6 H), 1.24–1.25 (m, 70 H), 1.57–1.58 (m, 4 H), 4.20–4.23 (m, 4 H), 8.64–8.66 (d, \(J = 8.0 \), 2 H), 8.76 (s, 2 H), 10.12–10.14 (d, \(J = 8.0 \), 2 H), MS (MALDI-TOF): calcd for C_{68}H_{90}N_2O_4, 999.45 m/z, found 999.32. Anal. Calcd for C_{68}H_{90}N_2O_4: C, 81.72; H, 9.08; N, 2.80. Found: C, 81.56; H, 8.96; N, 2.91.

\textbf{N, N’-bis(n-hexadecyl)-1,7-di(trimethylsilylethynyl)perylene-3,4,9,10- tetracarboxyldiimide (TMSA).} \ N, N’-bis(n-hexadecyl)-1,7-dibromoperylene-3,4,9,10-tetracarboxyldiimide (0.14 g, 0.14 mmol), trimethylsilylacetylene (0.08 g, 0.84 mmol), [Pd(PPh_3)_4] (0.02 mg, 0.02 mmol) and CuI were stirred in a mixture of 15 mL of triethylamine and 15 mL of THF for 14 h at 53 °C under argon atmosphere. The mixture was cooled to room temperature and diluted with CH_2Cl_2. The organic layer was washed three times with water to neutral, dried with Na_2SO_4, and the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/CH_2Cl_2, 1:1) to yield the red product 0.13 g (88%). ^1H NMR (CDCl_3, 400 MHz) \(\delta \) (ppm): 0.85–0.89 (m, 6 H), 1.24–1.42 (m, 70 H), 1.72–1.80 (m, 4 H), 4.18–4.22 (m, 4 H), 8.57–8.59 (d, \(J = 8.0 \), 2 H), 8.74 (s, 2 H), 10.12–10.14 (d, \(J = 8.0 \), 2 H), calcd for C_{66}H_{90}N_2O_4Si_2, 1031.60 m/z, found 1031.33. Anal. Calcd for C_{66}H_{90}N_2O_4Si_2: C, 76.84; H, 8.79; N, 2.72. Found: C, 76.55; H, 8.92; N, 2.75.

\textbf{N,N’-bis(n-hexadecyl)-1,7-di(triethylsilylethynyl)perylene-3,4,9,10-tetracarboxyldiimide (TESA).} \ N, N’-bis(n-hexadecyl)-1,7-dibromoperylene-3,4,9,10-tetracarboxyldiimide (0.09 g, 0.1 mmol), (triethylsilyl)acetylene (0.08 g, 0.84 mmol), [Pd(PPh_3)_4] (0.01 g, 0.01 mmol), CuI were stirred in a mixture of 15 mL of triethylamine and 15 mL of THF for 14 h at 53 °C under argon atmosphere. The mixture was cooled to room temperature and diluted with CH_2Cl_2. The organic layer was washed three times with water to neutral, dried with Na_2SO_4, and the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/CH_2Cl_2, 1:1) to yield the red product 0.08 g (76%). ^1H NMR (CDCl_3, 400 MHz) \(\delta \) (ppm): 0.80–0.83 (m, 24 H), 1.13–1.17 (m, 12 H), 1.24–1.28 (m, 52 H), 1.72–1.80 (m, 4 H), 4.18–4.22 (m, 4 H), 8.52–8.54 (d, \(J = 8.0 \), 2 H), 8.74 (s, 2 H), 10.17–10.19 (d, \(J = 8.0 \), 2 H), calcd
for C_{72}H_{102}N_{2}O_{4}Si_{2}, 1115.76 m/z, found 1115.26. Anal. Calcd for C_{72}H_{102}N_{2}O_{4}Si_{2}: C, 77.50; H, 9.21; N, 2.51. Found: C, 77.62; H, 9.18; N, 2.49.

N,N’-bis(n-hexadecyl)-1,7-di(triisopropylsilylethynyl)perylene-3,4,9,10-tetracarboxydiimide (TPSA). N,N’-bis(n-hexadecyl)-1,7-dibromoperylene-3,4,9,10-tetracarboxy-diimide (0.10 g, 0.10 mmol), (triisopropylsilyl)acetylene (0.09 g, 0.48 mmol), [Pd(PPh$_3$)$_4$] (0.01 g, 0.01 mmol), CuI were stirred in a mixture of 10 mL of triethylamine and 10 mL of THF for 14 h at 53 °C under argon atmosphere. The mix was cooled to room temperature and diluted with CH$_2$Cl$_2$. The organic layer was washed three times with water to neutral, dried with Na$_2$SO$_4$, and the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel(petroleum ether/CH$_2$Cl$_2$, 1:1) to yield the red product 0.09 g (78%). 1H NMR (CDCl$_3$, 400 MHz) δ(ppm): 1.22–1.28 (m, 94 H), 1.59–1.62 (m, 4 H), 1.75–1.79 (m, 6 H), 4.19–4.23 (m, 4 H), 8.60–8.63 (d, $J = 8.4$, 2 H), 8.82 (s, 2 H), 10.33–10.35 (d, $J = 8.0$, 2 H). calcd for C$_{78}$H$_{114}$N$_2$O$_4$Si$_2$, 1199.92 m/z, found 1199.91. Anal. Calcd for C$_{78}$H$_{114}$N$_2$O$_4$Si$_2$: C, 78.02; H, 9.58; N, 2.33. Found: C, 78.00; H, 9.65; N, 2.36.
2. Supporting Figures

Fig. S1 Schematic image of gas sensing device with length and width of channel.

Fig. S2 SEM image of DMB gas sensing device.
Fig. S3 SEM image of TMSA gas sensing device.

Fig. S4 SEM image of TESA gas sensing device.
Fig. S5 SEM image of TPSA gas sensing device.