Supporting Information

Effects of gradual oxidation of aromatic sulfur-heterocycle derivatives on multilevel memory data storage performance

Zhaojun Liu,1 Erbo Shi,2 Yu Wan,2 Najun Li,2 Dongyun Chen,2 Qingfeng Xu,2 Hua Li,∗2 Jianmei Lu,∗,2 Keqin Zhang,1 and Lihua Wang 2

1 College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
2 Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China

1. Preparation of PTZ-CN, PTZO-CN and PTZDO-CN.

All reactions were carried out under an air atmosphere unless otherwise stated. The following compounds were synthesized according to the procedures reported in the literature: 10-octyl-10H-phenothiazine[1]; 3,7-dibromo-10-octyl-10H-phenothiazine[2]; 3,7-dibromo-10-octyl-10H-phenothiazine 5-oxide[3]; 3,7-dibromo-10-octyl-10H-phenothiazine 5,5-dioxide[4].

Synthesis of compound 2 (10-octyl-10H-phenothiazine). A dry flask (500 mL) was charged with phenothiazine (10.0 g, 50.2 mmol) and KOH (2.8 g, 50.2 mmol) under nitrogen at 80°C, after the system had been stirred for 20 min, n-octyl bromide (9.7 g, 50.2 mmol) was slowly added by syringe. The color of the reaction mixture changed from black to yellow, and the solution was stirred for 3 h. After completion of the reaction, the reaction mixture was diluted with H2O and extracted with EtOAc (3 × 50 mL) by separatory funnel. The combined organic layer was washed with brine and dried over anhydrous sodium sulfate and then the organic solvents were completely removed by rotary evaporation. The residue was purified by column chromatography using
petroleum as eluent to give 2 (14.0 g, 90%) as a yellow oil. 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.13$ (d, J=7.5, 4H), 6.86 (d, J=6.9, 4H), 3.84 (m, 2H), 1.97 – 1.71 (m, 2H), 1.33 (m, 10H), 0.86 (t, J=6.9, 3H).

Synthesis of compound 3 (3, 7-dibromo-10-octyl-10H-phenothiazine). In a two-necked flask with a dropping funnel under a nitrogen atmosphere, compound 2 (3.1 g, 10 mmol) was dissolved in trichloromethane (30 mL). Bromine (2.1mL, 40 mmol) dissolved in acetic acid (10 mL) and added dropwise to the solution, where upon it slightly warmed and its color turned dark red. After the system had been stirred for 2 hours at room temperature, another portion of bromine (1.0 mL, 19 mmol) was added to the reaction mixture and the color turned dark green. The solution was stirred for 2 hours at room temperature, and then a saturated aqueous solution of sodium sulfite (20 mL) and diethyl ether (20 mL) were added to the mixture and the system was stirred for 30 minutes. The organic phase was separated, and the aqueous layer was extracted several times with diethyl ether. The combined organic layers were dried with sodium sulfate, and the solvents were removed under reduced pressure. The residue was chromatographed on silica gel (n-hexane/acetone 10:1) to give 3(4.2 g, 90 %) as a yellow oil. 1H NMR (400 MHz, CDCl$_3$) $\delta = 7.32$ – 7.08 (m, 4H), 6.66 (d, J=8.5, 2H), 3.73 (t, J=7.1, 2H), 1.85 – 1.55 (m, 2H), 1.49 – 1.08 (m, 10H), 0.86 (t, J=6.8, 3H).

Synthesis of compound 4a (3,7-dibromo-10-octyl-10H-phenothiazine 5-oxide). To a solution of (2.3 g, 5 mmol) of compound 3 in 20 mL of DCM, a solution of meta-chloroperoxybenzoic acid (1.0 g, 5 mmol, 85%) in DCM (10 mL) was added dropwise over 30 min at 0°C. The reaction was completed within 2 h. The reaction mixture was washed with oversaturated aqueous of Na$_2$CO$_3$, and then the reaction mixture was extracted with DCM (3 × 20 mL) by separatory funnel and the combined organic layers were washed with brine and dried over anhydrous sodium sulfate and then the organic solvents were completely removed by rotary evaporation. The residue was purified by column chromatography using petroleum ether/ethyl acetate (5/1; v/v) to offer compound 4a as (1.93 g, 80%) as a pink solid. 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.03$ (d, J=2.3, 2H), 7.70 (dd, J=9.0, 2.3, 2H), 7.26 (d, J=3.1, 2H), 4.13 (dd, J=22.6, 14.4, 2H), 1.93 – 1.88 (m, 2H), 1.45 – 1.22 (m, 10H), 0.90 (t, J=6.7, 3H). HRMS: Anal. Calcd. For C$_{20}$H$_{23}$Br$_2$NOS [M + H]$^+$ 483.9867, 487.9826 found 483.9857,487.9834
Synthesis of compound 4b (3,7-dibromo-10-octyl-10H-phenothiazine 5,5-dioxide). To a solution of (2.3 g, 5 mmol) of compound 3 in 20 mL of acetic acid, a solution of Hydrogen peroxide (8 mL, 80 mmol, 30%) was added dropwise over 30 min at at room temperature. The reaction mixture was transferred to 90 °C stirring overnight. After completion of the reaction, the reaction mixture was washed with oversaturated aqueous of Na$_2$SO$_3$, and then the reaction mixture was extracted with ethyl acetate (3 × 20 mL) by separatory funnel and the combined organic layers were washed with brine and dried over anhydrous sodium sulfate and then the organic solvents were completely removed by rotary evaporation. The residue was purified by column chromatography using petroleum ether/ethyl acetate (8/1; v/v) to offer compound 4b as (2.37 g, 95%) as a white solid. 1H NMR (400 MHz, CDCl$_3$) δ = 8.19 (d, J=2.3, 2H), 7.69 (dd, J=9.1, 2.4, 2H), 7.21 (d, J=9.1, 2H), 4.16 – 4.06 (m, 2H), 1.91 – 1.88 (m, 2H), 1.37 – 1.23 (m, 10H), 0.88 (t, J=6.7, 3H). HRMS: Anal. Calcd. For C$_{20}$H$_{23}$Br$_2$NO$_2$S [M + H]$^+$ 499.9816, 503.9775 found 499.9900,503.9765.

Synthesis of compound 5a (4,4’-(10-octyl-10H-phenothiazine-3,7-diyldibenzonitrile). compound 3 (1.0 mmol ratio), 4-Cyanophenylboronic Acid (4.0 mmol ratio), Pd(PPh$_3$)$_4$ (0.03 mmol ratio) and Potassium carbonate (4 mmol ratio) in distilled 1,4-dioxane (15 mL), degassed deionized water (5 mL) were added by syringe under a nitrogen atmosphere, then the mixture was refluxed for 12 h. After being cooled to room temperature, the mixture was poured into 30 mL deionized water and the organic layer was separated. The aqueous layer was extracted with ethyl acetate (3×20 mL) and the combined organic layers were dried over anhydrous Na$_2$SO$_4$. After the solvent was evaporated, the crude product was purified by silica column chromatography using petroleum ether/ethyl acetate (5/1; v/v) to offer compound 5a as (462 mg, 90%) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$) δ = 7.65 (dd, J=28.5, 8.1, 8H), 7.44 – 7.33 (m, 4H), 6.95 (d, J=8.4, 2H), 3.90 (t, J=6.5, 2H), 1.91 – 1.78 (m, 2H), 1.41-1.22 m, 10H), 0.86 (t, J=6.2, 3H). 13C NMR (101 MHz, CDCl$_3$) δ = 144.99, 144.09, 133.40, 132.59, 126.80, 126.26, 125.79, 124.77, 118.94, 115.73, 110.41, 47.68, 31.67, 29.14, 26.82, 26.68, 22.57, 14.07. HRMS: Anal. Calcd. For C$_{34}$H$_{31}$N$_3$S [M + H]$^+$ 514.2239 found 514.2300.
Compounds 5b and 5c were synthesized using a similar procedure for compound 5a.

Synthesis of compound 5b (4,4’-(10-octyl-5-oxido-10H-phenothiazine-3,7-diyl)dibenzonitrile). 380 mg, 72%, pale yellow solid. 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.21$ (dd, $J=4.4$, 2.2, 2H), 7.94 – 7.88 (m, 2H), 7.82 – 7.62 (m, 8H), 7.60 – 7.52 (m, 2H), 4.31 (t, $J=5.8$, 2H), 2.10 – 1.93 (m, 2H), 1.65 – 1.18 (m, 10H), 0.92 (d, $J=4.5$, 3H). 13C NMR (101 MHz, CDCl$_3$) $\delta = 143.30$, 137.92, 132.91, 132.86, 131.51, 130.27, 127.13, 124.72, 118.72, 116.61, 111.14, 48.43, 31.72, 29.23, 26.82, 26.35, 22.60, 14.07. HRMS: Anal. Calcd. For C$_{34}$H$_{31}$N$_3$O$_3$ [M + H]$^+$ 530.2188 found 530.2279.

Synthesis of compound 5c (4,4’-(10-octyl-5,5-dioxido-10H-phenothiazine-3,7-diyl)dibenzonitrile). 502 mg, 92%, pale yellow solid. 1H NMR (400 MHz, CDCl$_3$) $\delta = 8.40$ (d, $J=2.2$, 2H), 7.91 (dd, $J=8.9$, 2.2, 2H), 7.83 – 7.73 (m, 8H), 7.51 (d, $J=9.0$, 2H), 4.30 – 4.24 (m, 2H), 2.05 – 1.96 (m, 2H), 1.59 – 1.27 (m, 10H), 0.91 (t, $J=6.7$, 3H). 13C NMR (101 MHz, CDCl$_3$) $\delta = 142.88$, 140.39, 133.01, 132.88, 131.76, 127.23, 124.69, 122.19, 118.62, 116.98, 111.46, 48.71, 31.68, 29.16, 29.15, 26.80, 26.66, 22.57, 14.05. HRMS: Anal. Calcd. For C$_{34}$H$_{31}$N$_3$O$_2$S [M + H]$^+$ 546.2137 found 546.2294.

References

2. The memory device image

![Image](image.png)

Fig. S1. (top) Illustration of the sandwich device; (bottom) SEM image of a cross-
section view of the device

2. Thermal properties image

![TGA curves of the three molecules with a heating rate of 20°C min⁻¹ under nitrogen](image)

Figure S2. TGA curves of the three molecules with a heating rate of 20°C min⁻¹ under nitrogen

3. Energy levels image

![LUMO and HOMO energy levels for the three functional moieties](image)

Figure S3. LUMO and HOMO energy levels for the three functional moieties (10-methyl-10H-phenothiazine 5-oxide moiety, sulphoxide; 10-methyl-10H-phenothiazine 5, 5-dioxide, sulfone; benzonitrile, cyan).
4. DFT molecular simulation results

Figure S4. HOMOs and LUMOs of PTZ-CN, PTZO-CN and PTZDO-CN in their optimized ground-state structures.

4. Stability tests of the devices

Figure S5. Stability tests of the fabricated ITO/PTZ-CN (a and b) or PTZO-CN (c and d) or PTZDO-CN (e and f)/Al memory device: (a, c and e) retention time measurement for the ON-, intermediate- and OFF-states with a constant reading voltage of -1 V; (b, d and f) effect of read pulse of -1 V on the ON-, intermediate-
and OFF-states. The inset shows the pulse shape employed

5. I-V Curve

Figure S6. Current-voltage (I-V) characteristics of the memory device with the structure of ITO/compound/LiF(5nm)/Ag: (a) PTZ-CN; (b) PTZO-CN; (C) PTZDO-CN.