Supporting Information

Benzobisthiadiazole-based conjugated donor-acceptor polymers for organic thin film transistors: effects of \(\pi\)-conjugated bridges on ambipolar transport

Yang Wang, Tomofumi Kadoya, Lei Wang, Teruaki Hayakawa, Masatoshi Tokita, Takehiko Mori and Tsuyoshi Michinobu*

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

*Corresponding address:
Tsuyoshi Michinobu
Tel/Fax: +81-3-5734-3774, E-mail: michinobu.t.aa@m.titech.ac.jp
Fig. S1 1H NMR spectrum of compound 1.

Fig. S2 13C NMR spectrum of compound 1.
Fig. S3 1H NMR spectrum of compound 2.

Fig. S4 13C NMR spectrum of compound 2.
Fig. S5 1H NMR spectrum of compound 3.

Fig. S6 13C NMR spectrum of compound 3.
Fig. S7 1H NMR spectrum of compound 4.

Fig. S8 13C NMR spectrum of compound 4.
Fig. S9 ¹H NMR spectrum of compound 5.

Fig. S10 ¹³C NMR spectrum of compound 5.
Fig. S11 1H NMR spectrum of PBBT-FT.

Fig. S12 1H NMR spectrum of PBBT-T-FT.
Fig. S13 1H NMR spectrum of PBBT-Tz-FT.
Fig. S14 (a) TGA of the polymers under nitrogen flow (50 mL min$^{-1}$) at the heating rate of 10 °C min$^{-1}$ and DSC curves of (b) PBBT-FT, (c) PBBT-T-FT, and (d) PBBT-Tz-FT. All the DSC curves are the second heating and cooling processes under nitrogen flow (50 mL min$^{-1}$) at the scan rate of 10 °C min$^{-1}$.
Fig. S15 Normalized absorption spectra of (a) PBBT-FT and (b) PBBT-T-FT in dilute CHCl₃, as-cast thin film, and annealed film at 150 °C for 30 min.
Fig. S16 (a) Current–voltage (I–V) characteristics of TFTs fabricated by spin-coating in air. Comparison of transfer characteristics for (a),(b) PBBT-FT; (c),(d) PBBT-T-FT; (e),(f) PBBT-Tz-FT films under optimized conditions stored in air (hole-enhancement operation with $V_{DS} = -80$ V and electron-enhancement operation with $V_{DS} = 80$ V; $L = 100 \mu m$ and $W = 1$ mm).
Fig. S17 Tapping-mode AFM topography images (left: as-cast, right: after thermal annealing at 200 °C for 10 min) of the PBBT-T-FT films spin-cast from a chloroform solution. AFM size: 10 × 10 µm².

Fig. S18 Comparison of the TFT performances (a: average hole mobility values from 5 to 10 devices, b: average electron mobility values from 5 to 10 devices) of the devices fabricated in air and in a glove box under optimized conditions.
Fig. S19 Current–voltage (I–V) characteristics of TFTs fabricated by spin-coating in a glove box under optimized conditions. Transfer characteristics for PBBT-FT films (a: hole, b: electron), for PBBT-T-FT films (c: hole, d: electron), and for PBBT-Tz-FT films (e: hole, f: electron) at the carrier-enhancement operation with $V_{DS} = -80$ and $+80$ V, respectively ($L = 100$ μm and $W = 1$ mm, all the measurements were done under vacuum (10^{-4}-10^{-5} mbar)).
Table S1 Summary of TFT device performances stored in air

<table>
<thead>
<tr>
<th>Polymer</th>
<th>μ_h (cm2 V$^{-1}$ s$^{-1}$)</th>
<th>μ_e (cm2 V$^{-1}$ s$^{-1}$)</th>
<th>I_{on}/I_{off}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBBT-FT</td>
<td>1.3×10$^{-1}$ (9.2×10$^{-2}$)</td>
<td>3.1×10$^{-3}$ (2.3×10$^{-3}$)</td>
<td>p:104-105; n:102-103</td>
</tr>
<tr>
<td>One week</td>
<td>1.0×10$^{-1}$ (5.9×10$^{-2}$)</td>
<td>2.6×10$^{-3}$ (2.0×10$^{-3}$)</td>
<td>p:104-105; n:101-102</td>
</tr>
<tr>
<td>Two weeks</td>
<td>9.5×10$^{-2}$ (5.6×10$^{-2}$)</td>
<td>2.4×10$^{-3}$ (1.9×10$^{-3}$)</td>
<td>p:104-105; n:102-103</td>
</tr>
<tr>
<td>Four weeks</td>
<td>9.0×10$^{-2}$ (5.5×10$^{-2}$)</td>
<td>2.1×10$^{-3}$ (1.6×10$^{-3}$)</td>
<td>p:104-105; n:101-102</td>
</tr>
<tr>
<td>PBBT-T-FT</td>
<td>6.5×10$^{-3}$ (4.8×10$^{-3}$)</td>
<td>1.2×10$^{-3}$ (8.3×10$^{-4}$)</td>
<td>p:102-103; n:101-102</td>
</tr>
<tr>
<td>One week</td>
<td>6.0×10$^{-3}$ (5.6×10$^{-3}$)</td>
<td>7.7×10$^{-4}$ (5.1×10$^{-4}$)</td>
<td>p:102-103; n:101-102</td>
</tr>
<tr>
<td>Two weeks</td>
<td>4.8×10$^{-3}$ (3.7×10$^{-3}$)</td>
<td>6.0×10$^{-4}$ (3.8×10$^{-4}$)</td>
<td>p:103-104; n:101-102</td>
</tr>
<tr>
<td>Four weeks</td>
<td>4.4×10$^{-3}$ (3.5×10$^{-3}$)</td>
<td>3.8×10$^{-4}$ (1.5×10$^{-4}$)</td>
<td>p:103-104; n:101-102</td>
</tr>
<tr>
<td>PBBT-Tz-FT</td>
<td>6.8×10$^{-3}$ (5.8×10$^{-3}$)</td>
<td>1.5×10$^{-2}$ (1.3×10$^{-2}$)</td>
<td>p:101-102; n:102-103</td>
</tr>
<tr>
<td>One week</td>
<td>3.8×10$^{-3}$ (2.0×10$^{-3}$)</td>
<td>1.6×10$^{-3}$ (1.4×10$^{-3}$)</td>
<td>p:102-103; n:103-104</td>
</tr>
<tr>
<td>Two weeks</td>
<td>2.9×10$^{-3}$ (1.9×10$^{-3}$)</td>
<td>6.8×10$^{-4}$ (4.1×10$^{-4}$)</td>
<td>p:102-103; n:102-103</td>
</tr>
<tr>
<td>Four weeks</td>
<td>1.7×10$^{-3}$ (1.3×10$^{-3}$)</td>
<td>5.5×10$^{-4}$ (3.0×10$^{-4}$)</td>
<td>p:102-103; n:102-103</td>
</tr>
</tbody>
</table>

* Maximum values of the hole/electron mobilities measured under vacuum (10$^{-4}$-10$^{-5}$ Pa). The average values are in parentheses (from 5 to 10 devices).