Electronic Supplementary Information for:

Highly sensitive thin film phototransistors based on a copolymer of benzodithiophene and diketopyrrolopyrrole

Lanchao Ma,a,d Zhengran Yi,b Shuai Wang,*b Yunqi Liu,*a Xiaowei Zhan*a,c

a Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: xwzhan@iccas.ac.cn (X.Z.), liuyq@iccas.ac.cn (Y.L.)

b College of Chemistry and Chemical Engineering and Ministry of Education Key Laboratory for Large-Format Battery Materials and System, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, China. E-mail: chmsamuel@mail.hust.edu.cn (S.W.)

c Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.

d University of Chinese Academy of Sciences, Beijing 100049, China.
Fig. S1 The absorption coefficient of P(DPP4T-co-BDT) thin film on quartz substrate.

Fig. S2 2D GIXRD image of P(DPP4T-co-BDT) thin films on OTS-treated SiO$_2$/Si substrates after thermal treatment at 200 °C.
Fig. S3 The output characteristics of the OTFPTs (A) in the dark and (B) under white light irradiation with a power of 9.7 μW/cm².

Fig. S4 The transfer curves of OTFPTs with different started gate voltage ($V_{GS\, \text{start}}$) in dark (A) and under illumination (B).

Fig. S5 The reversibility of the OTFPTs.
Figure S6. 1H NMR spectrum of 2.
Fig. S7 13C NMR spectrum of 2.
Fig. S8 MALDI-TOF of 2.