Electronic Supporting Information

An ABA Triblock Copolymer Strategy for Intrinsically Stretchable Semiconductor

Rui Peng, Daqing Hu, Mengjie Chen, Bo Pang, Guobing Zhang, Xianghua Wang, Hongbo Lu, Kilwon Cho, Longzhen Qiu

a Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.
b Key Lab of Advanced Function Materials and Devices, Anhui Province, School of Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
c Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea.

Table of contents

Figure S1. The HNMR spectrum of Br-PMA-Br (CDCl3) .................................................................S2
Figure S2. The HNMR spectrum of N3-PMA-N3 (CDCl3) ...............................................................S2
Figure S3. The HNMR spectrum of ethynyl–terminated poly(3-hexylthiophene) (CDCl3) ............S3
Figure S4. FT-IR spectra of Br-PMA-Br, N3-PMA-N3 and P3HT-PMA-P3HT .........................S3
Figure S5. Output and transfer characteristics of a top-contact OTFT based on P3HT1, P3HT2 at V_D=-60v. .................................................................S4
Figure S1. The HNMR spectrum of Br-PMA-Br (CDCl$_3$)

Figure S2. The HNMR spectrum of N$_3$-PMA-N$_3$ (CDCl$_3$)
Figure S3. The HNMR spectrum of ethynyl-terminated poly(3-hexylthiophene) (CDCl₃).

Figure S4. FT-IR spectra of Br-PMA-Br, N₃-PMA-N₃ and P3HT-PMA-P3HT, the signal at 2100 cm⁻¹ was attributed to the azide stretching frequency.
Figure S5. Output and transfer characteristics of a top-contact OTFT based on P3HT₁, (a, b, $M_n=3800$, HNMR, $M_n=5200$, GPC), P3HT₂ (c, d $M_n=6600$, HNMR, $M_n=5600$, GPC) at $V_d=-60v$. The maximum field-effect mobilities of P3HT₁ and P3HT₂ were up to $4.2\times10^{-4}$ and $4.5\times10^{-4}\text{cm}^2/\text{V.s}$ respectively.