SUPPORTING INFORMATION

Tuning the Photonic Properties of Chiral Nematic Mesoporous Organosilica with Hydrogen-Bonded Liquid-Crystalline Assemblies

Michael Giese*ab, Tim Krappitzbc, Ronald Y. Dongd, Carl A. Michalde, Wadood Y. Hamadc, Brian O. Patrickb and Mark J. MacLachlanc

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Fig. S1 Polarized optical micrographs of 1 (a) and 2b (b) upon cooling from the isotropic melt reveal no liquid crystalline phase. (c,d) DSC profiles of 1 and 2b for both heating and cooling cycles. Literature assigns the two signals upon heating as the melting transitions of two different crystalline states.1,2

Fig. S2 IR data of compounds 3, 4a and 4b verifying the hydrogen bonding as the OH absorption bands shift to lower energy.
Fig. S3 SEM data of the CNMO films (a,b). Both images clearly depict the helical twist of the material. (c) POM observation showing the birefringence of the material between crossed polarizers. (d) Optical properties of CNC@CNMO films (red lines) and organosilica films upon acidic removal of the CNC (blue lines) are shown in the bottom row. Solid lines represent UV-vis spectra measured in transmittance mode, while the dotted lines represent CD spectroscopic data.

Fig. S4 TGA results of the CNMO films. The films are stable until reaching 380 °C. The weight loss up to 100 °C is due to moisture loss.
Fig S5 TGA data of CNMO films and composite 3@CNMO films. The first weight loss of 3@CNMO films at ~ 200 °C to 350 °C corresponds to the decomposition of the LC guest 3. The second weight loss resembles the loss related to the organic spacer groups of the host material. This weight loss, starting between ~ 350 °C to 700 °C, can also be observed in the black curve for the pristine host material.

Fig S6 Variable-temperature CD spectra of 3@CNMO upon heating (a) and cooling cycles (b); (c) variable-temperature CD spectra of 3@CNMO upon cooling; (d) variable-temperature UV-vis spectra of 3@CNMO upon heating. The CD graphs (a,b) were extracted from the full datasets at 727 nm at each temperature, corresponding to the maximum in the full spectra.

References

Single Crystal X-ray Diffraction

For compound 3

Data Collection
A yellow tablet crystal of C$_{57}$H$_{63}$N$_3$O$_6$ having approximate dimensions of 0.11 x 0.17 x 0.43 mm was mounted on a glass fiber. All measurements were made on a Bruker APEX DUO diffractometer with graphite monochromated Mo-K$_\alpha$ radiation.

The data were collected at a temperature of -183.0 ± 0.1ºC to a maximum 2θ value of 50.9°. Data were collected in a series of φ and ω scans in 0.5° oscillations using 30.0-second exposures. The crystal-to-detector distance was 37.73 mm.

Data Reduction
Of the 73811 reflections that were collected, 17878 were unique (R$_{int}$ = 0.050); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT1 software package. The linear absorption coefficient, µ, for Mo-K$_\alpha$ radiation is 0.78 cm$^{-1}$. Data were corrected for absorption effects using the multi-scan technique (SADABS2), with minimum and maximum transmission coefficients of 0.914 and 0.991, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement
The structure was solved by direct methods3. The material crystallizes with two crystallographically independent molecules in the asymmetric unit. In one formula unit one amine is disordered in two orientations. The disorder is essentially a 180° rotation about the C45—C46 bond. All non-hydrogen atoms were refined anisotropically. All OH hydrogen atoms were located in difference maps and refined isotropically. All other hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement4 on F2 was based on 17878 reflections and 1270 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \frac{\sum |F_o| - |F_c||}{\sum |F_o|} = 0.089$$
$$wR2 = \frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2}^{1/2} = 0.143$$

The standard deviation of an observation of unit weight5 was 1.01. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.61 and –0.32 e/Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber6. Anomalous dispersion effects were included in Fcalc7; the values for Δf‘ and Δf” were those of Creagh and McAuley8. The values for the mass attenuation coefficients are those of Creagh and Hubbell9. All refinements were performed using the SHELXL-201210 via the OLEX211 interface.
For compound 4a

Data Collection

A red prism crystal of C$_{48}$H$_{51}$N$_9$O$_6$ having approximate dimensions of 0.16 x 0.22 x 0.31 mm was mounted on a glass fiber. All measurements were made on a Bruker APEX DUO diffractometer with graphite monochromated Mo-K$_\alpha$ radiation.

The data were collected at a temperature of -183.0 ± 0.1°C to a maximum 2θ value of 60.3°. Data were collected in a series of φ and ω scans in 0.5° oscillations using 2.0-second exposures. The crystal-to-detector distance was 40.09 mm.

Data Reduction

Of the 79647 reflections that were collected, 12704 were unique (R$_{int} = 0.035$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT1 software package. The linear absorption coefficient, µ, for Mo-K$_\alpha$ radiation is 0.88 cm$^{-1}$. Data were corrected for absorption effects using the multi-scan technique (SADABS2), with minimum and maximum transmission coefficients of 0.910 and 0.986, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods3. All non-hydrogen atoms were refined anisotropically. All OH hydrogen atoms were located in difference maps and refined isotropically. All other hydrogen atoms were placed in calculated positions. The final cycle of full-matrix least-squares refinement4 on F2 was based on 12704 reflections and 583 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

- $R_1 = \sum |F_o| - |F_c| / \sum |F_o| = 0.058$
- $wR_2 = \left(\sum w(F_o^2 - F_c^2) / \sum w(F_o^2) \right)^{1/2} = 0.117$

The standard deviation of an observation of unit weight5 was 1.03. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.43 and -0.23 e/Å3, respectively. Neutral atom scattering factors were taken from Cromer and Waber6. Anomalous dispersion effects were included in Fcalc7; the values for Δf'' and Δf" were those of Creagh and McAuley8. The values for the mass attenuation coefficients are those of Creagh and Hubbell9. All refinements were performed using the SHELXL-201210 via the OLEX211 interface.

References

(4) Least Squares function minimized:

$$\sum w(F_o^2 - F_c^2)$$

(5) Standard deviation of an observation of unit weight:

$$\left(\sum w(F_o^2 - F_c^2) / (N_o - N_v) \right)^{1/2}$$

where: N_o = number of observations
N_v = number of variables

A. Crystal Data

<table>
<thead>
<tr>
<th>Compound 3</th>
<th>Compound 4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC Number</td>
<td>1033683</td>
</tr>
<tr>
<td>Empirical Formula</td>
<td>C₅₇H₆₃N₃O₆</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>506.33</td>
</tr>
<tr>
<td>Crystal Colour, Habit</td>
<td>yellow, tablet</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.11 x 0.17 x 0.43 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>triclinic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>a = 11.3178(10) Å; b = 21.3745(18) Å; c = 21.9731(18) Å; α = 70.045(4)°; β = 76.206(5)°; γ = 88.942(5)°</td>
</tr>
<tr>
<td>V = 4840.8(7) Å³</td>
<td>V = 4325.8(6) Å³</td>
</tr>
<tr>
<td>Space Group</td>
<td>P-1 (#15)</td>
</tr>
<tr>
<td>Z value</td>
<td>4</td>
</tr>
<tr>
<td>D<sub>calc</sub></td>
<td>1.216 g/cm³</td>
</tr>
<tr>
<td>F<sub>000</sub></td>
<td>1896.00</td>
</tr>
<tr>
<td>μ(Mo-Kα)</td>
<td>0.78 cm⁻¹</td>
</tr>
</tbody>
</table>

B. Intensity Measurements

<table>
<thead>
<tr>
<th></th>
<th>Bruker APEX DUO</th>
<th>Bruker APEX DUO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td>Mo-Kα (λ = 0.71073 Å)</td>
<td>Mo-Kα (λ = 0.71073 Å)</td>
</tr>
<tr>
<td>Data Images</td>
<td>1539 exposures @ 30.0 seconds</td>
<td>1626 exposures @ 2.0 seconds</td>
</tr>
<tr>
<td>Detector Position</td>
<td>37.73 mm</td>
<td>40.09 mm</td>
</tr>
<tr>
<td>2θ<sub>max</sub></td>
<td>50.9°</td>
<td>60.3°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 73811</td>
<td>Total: 79647</td>
</tr>
<tr>
<td>Unique: 17878 (R<sub>int</sub> = 0.050)</td>
<td>Unique: 12704 (R<sub>int</sub> = 0.035)</td>
<td></td>
</tr>
<tr>
<td>Corrections</td>
<td>Absorption (T<sub>min</sub> = 0.914, T<sub>max</sub> = 0.991) Lorentz-polarization</td>
<td>Absorption (T<sub>min</sub> = 0.910, T<sub>max</sub> = 0.986) Lorentz-polarization</td>
</tr>
</tbody>
</table>

C. Structure Solution and Refinement

<table>
<thead>
<tr>
<th></th>
<th>Direct Methods (SIR97)</th>
<th>Direct Methods (SIR97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinement</td>
<td>Full-matrix least-squares on F²</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Function Minimized</td>
<td>Σ w(Fo² - Fc²)²</td>
<td>Σ w(Fo² - Fc²)²</td>
</tr>
<tr>
<td>Least Squares Weights</td>
<td>w=1/([Fo²-(0.05658P)² + 2.1772P]²)</td>
<td>w=1/([Fo²-(0.0583P)² + 1.1770P]²)</td>
</tr>
<tr>
<td>Anomalous Dispersion</td>
<td>All non-hydrogen atoms</td>
<td>All non-hydrogen atoms</td>
</tr>
<tr>
<td>No. Observations (I>0.00σ(I))</td>
<td>17878</td>
<td>12704</td>
</tr>
<tr>
<td>No. Variables</td>
<td>1270</td>
<td>583</td>
</tr>
<tr>
<td>Reflection/Parameter Ratio</td>
<td>14.08</td>
<td>21.79</td>
</tr>
<tr>
<td>Residuals (refined on F², all data): R<sub>1</sub>; wR<sub>2</sub></td>
<td>0.089; 0.143</td>
<td>0.058; 0.117</td>
</tr>
<tr>
<td>Goodness of Fit Indicator</td>
<td>1.01</td>
<td>1.03</td>
</tr>
<tr>
<td>No. Observations (I>2.00σ(I))</td>
<td>12415</td>
<td>9981</td>
</tr>
<tr>
<td>Residuals (calculated on F²): R<sub>1</sub>; wR<sub>2</sub></td>
<td>0.052; 0.124</td>
<td>0.041; 0.106</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum peak in Final Diff. Map</td>
<td>0.61 e/Å³</td>
<td>0.43 e/Å³</td>
</tr>
<tr>
<td>Minimum peak in Final Diff. Map</td>
<td>-0.32 e/Å³</td>
<td>-0.23 e/Å³</td>
</tr>
</tbody>
</table>