In Situ Surface cleaning on a Ge Substrate using TMA and MgCp\(_2\) for HfO\(_2\)-based Gate Oxides

Il-Kwon Oh,\(^a\) Kangsik Kim,\(^b\) Zonghoon Lee,\(^b\) Jeong-Gyu Song,\(^a\) Chang-Wan Lee,\(^a\) David Thompson,\(^c\) Han-Bo-Ram Lee,\(^d\) Woo-Hee Kim,\(^e\) Wan Joo Maeng\(^f\)* and Hyungjun Kim\(^a\)*

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting information 1 Poole-Frenkel conduction by doping temperature-dependent Jg measurement, (a) TMA 120s cleaning and (b) MgCp\(_2\) 120s cleaning one. The fitted line slope of Ln(J/E) versus 1000/T yields the trap energy levels from the conduction band of HfO\(_2\), the effective values of which were determined to be 0.64 and 0.53 eV for 120s TMA- and MgCp\(_2\)-cleaned samples, respectively. This indicates that the trap energy levels of the 120s MgCp\(_2\)-cleaned sample are slightly lower than those of the 120s TMA-cleaned sample.
Supporting information 2 I-V curves of MOS capacitors with (a) TMA 120s cleaning and (b) MgCp₂ 120s cleaning measured at 25, 50, and 75 °C. At high temperatures, since the trap energy level of the 120s MgCp₂-cleaned sample is closer to the conduction band minimum, the leakage currents of the 120s MgCp₂-cleaned sample are larger than those of TMA.

Notes and references

a School of Electrical and Electronics Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul, Korea
b School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Korea
c Applied Materials, Sunnyvale, CA 94085, USA
d Department of Materials Science and Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, Korea
e Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, California 94305, United States
f Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, Wisconsin 53706, USA