We present a novel microfluidic platform for probing cellular signaling networks, combining a programmable system for generating arbitrarily complex temporal input stimulant concentration profiles with real-time fluorogenic monitoring of cell physiological response. Applying microfluidics to multi-parametric systems biology problems, like the analysis of signal transduction pathways, requires a high level of automation to rigorously control cellular environments and detect output signals. Addressing this challenge, we have developed a Java-based programmable microvalve system for automated control of reagent delivery, enabling the end user to generate complex chemical waveforms and perform multiple assays on individually addressable cell chambers on chip.

KEYWORDS: Microfluidics, Signal Transduction, Complex Systems, Cell
Live cell imaging is used to observe both spontaneous oscillations and response peaks driven by applied waveforms of histamine concentration generated on-chip (Figs. 1D, 2B).

Figure 1. A; two-layer chip design. Control lines in red, cell chambers in orange, flow lines in blue. B; fluorescent image of HeLa cells in a chamber stimulated with 1μM histamine. C; Waveform generation: demonstration of system accuracy reproducing a desired output. D; three individual cell responses to a faster, multi-stepped waveform (blocks in orange).

Figure 2. A; composite kymograph of calcium response to histamine. Each striped vertical band indicates an individual oscillating HeLa cell. A lower level (20μM) is applied for 3 minutes and then 15 second pulses of 100μM histamine are applied with decreasing frequency (1Hz, 0.75Hz, 0.5Hz, 0.25Hz). B; cell response averaged over a population.

With our chip design, we are able to compare responses of separate subpopulations identically cultured on a single chip to different concentrations using isolatable cell chambers. The use of multiple, individually addressable cell chambers is a unique scalable design feature that permits meaningful, simultaneous analysis of multiple input waveforms.
RESULTS AND DISCUSSION

Comparison of early experimental data obtained in our microfluidic platform with the simple oscillatory calcium model provides insight into adaptive and refractory behavior in cell signaling pathways and hints at the importance of cell to cell variability (Figs. 1D, 2A). Each cell responds with a unique natural oscillation frequency to a given steady concentration of histamine (Fig. 2A) and our system allows us to follow the response of individual cells to histamine concentration changes. Cells exhibit an increasing lag in response to a histamine pulse train of decreasing frequency (Fig. 2B). This lag is not seen in simulations using the current model and implies slower calcium release over time or a stable refractory period, a longer-term behavior not normally observable using existing plate-based assay techniques. Using iterative feedback between real, complex temporal input/output experimental data and model simulations, we will be able to infer and then test previously hidden signal transduction connectivity and behaviour of this system.

CONCLUSIONS

The remarkable complexity of cellular signalling pathways reflects the complex external signals that such pathways were evolved to detect [7]. We have developed a novel platform that allows such complex signals to be reproduced and cellular responses measured, under programmable control. Such novel capability will revolutionize the study of mammalian signal transduction.

ACKNOWLEDGEMENTS

Thanks to Saman Amarasinghe and William Thies for software infrastructure. Financial support from the National Science Foundation (Grant #0541319).

REFERENCES