STANDING-WAVE MICROSPectROMETER FOR MULTIPLE FLuORESCENCE DETECTION

Edward L. Ginzton Laboratory, Stanford University

Abstract

We have developed a compact optical microspectrometer, based on a standing-wave architecture, for integration with a microfluidic chip. The device is designed for adaptive discrimination among fluorescence signals, with tunable spectral resolution and selective suppression of broadband background light.

Keywords: Optical, spectrometer, standing wave, tunable resolution

The ideal portable microfluidic chip-based fluorescence detection system would include an integrated optical microsensor capable of detecting and flexibly discriminating among a wide range of simultaneous fluorescence emission signals. We present a compact optical microspectrometer based on a standing-wave architecture [1], and we discuss results of spectral discrimination of optical test sources in the visible (488 nm – 665 nm) and near infrared (633 nm – 866 nm).

Fig. 1. Left: Near-IR microspectrometer schematic. Light enters from below the detector holder, traverses the detector, and reflects off the mirror pillar back toward the detector. Right: Photos of mirror and detector components.
This device (Fig. 1) is based on the standing-wave transform spectrometer architecture with a moving mirror and a partially transmitting photodetector. Incident light reflecting off the mirror creates an optical standing wave. While the mirror scans along the optical beam axis, the detector samples the moving standing wave; the Fourier Transform (FT) of the resulting time varying photocurrent yields the optical spectrum. This architecture offers the same advantages as other FT spectrometers, but in an optically 1-D system; this eliminates the need for a beamsplitter and reference mirror. Hybrid integration allows implementation of any photodetector material, and thus detection in any wavelength range. Our near infrared device contains a GaAs/AlGaAs photodiode [2], and our visible device contains an a-SiC:H/a-Si:H photodiode [3]. In both cases the mirror component is a parallel-plate electrostatically driven Si MEMS actuator. High-amplitude harmonic oscillation, up to 52 nm at 800 Hz, enables fast, continuous spectral analysis. With an actuator capacitance of only 4.2 pF, it should draw < 0.1% of the power drawn by a typical piezoelectric transducer.

![Graph of Wavelength vs Optical Spectrum](image)

Fig. 2. Superimposed spectra from near-IR micro-spectrometer for lasers at 866 nm and 633 nm, demonstrating a spectral resolution of 100 cm⁻¹ (4 nm at λ = 633 nm, or 7 nm at λ = 866 nm).

With a surface-normal, linear optical design, the 17 × 13 × 1 mm device is well-suited to integration with a microfluidic chip. Spectral resolution of 4 nm (λ = 633 nm), which is much less than the typical fluorescence bandwidth, was recently achieved with an integrated near infrared prototype (Fig. 2). Whereas most microspectrometers (commonly grating-based devices with a detector array) have poor spectral multiplexing...
characteristics, our standing-wave microspectrometer has the multiplexing advantage and simple single detector readout of a FT spectrometer. Microspectrometers usually have fixed spectral resolution, however our device can be easily configured for a particular sensing task by tuning its spectral resolution, allowing real-time optimization of sensitivity. With a visible device, continuous resolution tuning from 72 nm to 6 nm ($\lambda = 633$ nm) was demonstrated (Fig. 3).

![Interferograms and Optical Spectra](image)

Fig. 3. Top row: Interferograms (AC photocurrent) from visible microspectrometer for mirror scan lengths of a) 3.8 μm, b) 14 μm, and c) 31 μm. Bottom row: Optical spectra derived from interferograms, with low, medium, and high resolutions (peak full-width at half-maximum, at $\lambda = 633$ nm) of a) 1800 cm$^{-1}$ = 72 nm, b) 340 cm$^{-1}$ = 14 nm, and c) 140 cm$^{-1}$ = 5.6 nm, respectively.

Two unique physical properties of this device can be used to suppress scattered pump light in fluorescence experiments. The minimum mirror-detector distance can be set by adjusting the actuator drive amplitude; this reduces the sensitivity to sources with low spectral coherence, which allows for preferential suppression of any broadband light source such as a broadband lamp pump. Also, the photodetector thickness can be designed so that there is a minimum of generated AC current for one wavelength, and a relatively strong AC signal for nearby wavelengths; this enables suppression of laser pump light with preferential detection of fluorescence emission.
In conclusion, we have investigated a number of intriguing capabilities of the standing-wave microspectrometer, with particular attention to those that could make this device useful in microsystems dependent on analysis of fluorescence emission.

Acknowledgements
This work was supported by the Defense Advanced Research Projects Agency. SRB and NCH were supported by the Regina Casper and Gerhard Casper Stanford Graduate Fellowships.

References