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Celebrating >60 Years of the DNA Double Helix

The discoverers of the DNA structure, James Watson,  left, 
and Francis Crick, with their model of a DNA molecule.

(A. Barrington Brown/Photo Researchers, Inc.)

James D. Watson and Francis H. Crick April 25, 1953 (2), Nature (3), 171, 737-738.
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oligonucleotide synthesis is presented and understanding the myriad effects on 
the environmental chemistry – the natural world in which we live.

Sanghvi et al. Applications of green chemistry in the manufacture of oligonucleotide drugs.    
Pure Appl. Chem.  2001, 73, 175.



Twelve Principles of Green Chemistry
for Chemistsfor Chemists

1. Waste prevention instead of remediation
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11. Analytical methodologies for pollution prevention

12. Inherently safer processes

Sustainable Process Chemistry:
Sanghvi et al. in Org. Process Res. Dev., 2011, 15, 898.



Natural Raw Material Pipeline
for Oligo Based Drugsfor Oligo-Based Drugs
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Inefficient Process for Oligonucleotide Synthesis
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Unacceptable timelines, energy and solvent consumption
for the development of therapeutic drugs!



Limitations of the
Fish based 2´ Deoxy Nucleoside PipelineFish-based 2 -Deoxy Nucleoside Pipeline
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 Bulk price has hit the floor ~$1,000/Kgp , g

 Small-scale production <1 metric ton/year

p , g

 Small-scale production <1 metric ton/year

Cost-effective Green alternatives?



Green Synthesis of 2'-Deoxynucleosides
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Green Alternatives For -2'-deoxynucleosides

BOHO B BHOB

Chemical Deoxygenenation Method
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2'-Deoxynucleosides

Advantages of the protocol:
 Recoverable and recyclable 3´ 5´ protecting group: MDPSCl
 Use of significantly cheaper xanthate leaving group Use of significantly cheaper xanthate leaving group
 Replacement of explosive AIBN with safe activator
 Use of polymeric silane instead of toxic tin reagent

 Fermentation based RNA nucleosides as raw materials

Wen, K.; Chow, S.; Sanghvi, Y. S. Theodorakis, E. A. J. Org. Chem. 2002, 67, 7887. 



Solid-Phase Phosphoramidite Approach
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How do we plan to circumvent above limitations?
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E-Factor in Oligonucleotide Manufacture

AmiditesAmidites
315 L315 L

BeaucageBeaucage
448 L448 L

TetrazoleTetrazole
577 L577 L

AcetonitrileAcetonitrileDeblockDeblockCap A & BCap A & B
18,250 L18,250 L8,000 L8,000 L

pp
780 L780 L

SynthesizerSynthesizer

OligoOligo
6 K6 K

OtherOther
Recycle?Recycle?

~ 6 Kg~ 6 Kg ByproductsByproducts
A l t f th t d l t ld b d l d!A l t f th t d l t ld b d l d!A l t f th t d l t ld b d l d!A l t f th t d l t ld b d l d!A lot of these reagents and solvents could be reused or recycled!A lot of these reagents and solvents could be reused or recycled!A lot of these reagents and solvents could be reused or recycled!A lot of these reagents and solvents could be reused or recycled!



Solution-Phase H-Phosphonate Method
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For the success of solution-phase approach, large-scale 
production of protected nucleoside is essential!
For the success of solution-phase approach, large-scale 
production of protected nucleoside is essential!



Part I
Chemo Regio and StereoselectiveChemo-, Regio- and Stereoselective 
Syntheses of Protected Nucleosides

Focus on Biocatalytic Acylation & Hydrolysis Reactions

 Presence of multiple OH groups

Focus on Biocatalytic Acylation & Hydrolysis Reactions

 Exocyclic NH2 groups
Other reactive functional groupsOther reactive functional groups
Anomeric center: - and -nucleosides
R i i t D d L l idRacemic mixture: D and L nucleosides



Enzymatic Transformations Using Lipases
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Chem. Rev. 2001, 101, 3367



5´-Regioselective Hydrolysis of Bis-O-Levulinyl 
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 Candida antarctica lipase B (CAL-B, Novozym 435, 7300 U/g) regioselectively 
hydrolyzed 5´-O-Lev. Group

 The hydrolysis was complete in 18-62 hours with excellent isolated yields

 Candida antarctica lipase B (CAL-B, Novozym 435, 7300 U/g) regioselectively 
hydrolyzed 5´-O-Lev. Group

 The hydrolysis was complete in 18-62 hours with excellent isolated yields

 The hydrolysis of N-benzoyl protected A and C was non-selective (NS) The hydrolysis of N-benzoyl protected A and C was non-selective (NS)

I. Lavandera, J. Garcia, S. Fernández, M. Ferrero, V. Gotor and Y. SanghviI. Lavandera, J. Garcia, S. Fernández, M. Ferrero, V. Gotor and Y. Sanghvi                                        
In Current Protocols in Nucleic Acid Chemistry 2005, 2.11.1-2.11.36.



5´-Regioselective Hydrolysis of 2´-Modified
Bis-O-Levulinyl Protected Nucleosides Using LipasesBis-O-Levulinyl Protected Nucleosides Using Lipases
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J. Garcia, S. Fernandez, M. Ferrero, Y. Sanghvi & V. Gotor
J. Org. Chem. 2002, 67, 4513. 
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3´-Regioselective Hydrolysis of 2´-Modified Bis-O-
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 Attempts with CAL-A and Chromobacterium viscosum lipase (CVL, 
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J. Garcia, S. Fernadez, M. Ferrero, Y. Sanghvi & V. Gotor
N N& NA 2003, 22, 1455. 



Why Two-Steps And Not One?
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 Excellent regioselectivity with other natural products Chemical Precision

 Hydrolysis protocol required synthesis of bis-acylated nucleoside followed 
by regioselective hydrolysis: Over all two-steps

 Acylation could be carried out in a single step, if regioselective! Acylation could be carried out in a single step, if regioselective!



3´ or 5´-O-Regioselective Acylation of 
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J. Garcia, S. Fernandez, M. Ferrero, Y. Sanghvi & V. Gotor
Tetrahedron Asymmetry 2003, 14, 3533.



Regioselective 5´-O-Benzoylation of
Nucleosides Using LipasesNucleosides Using Lipases
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 Both, enzyme and acyl donor were recycled ( 5 times)

 These nucleosides are key building-blocks for the synthesis of amidate oligos

J G i S F á d M F Y S h i & V G tJ. Garcia, S. Fernández, M. Ferrero, Y. Sanghvi & V. Gotor
Tetrahedron letters 2004, 45, 1709-1712.



Enzymatic Separation of D/L Thymidine
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J. García, S. Fernández, M. Ferrero, Y. Sanghvi & V. Gotor
Org. Lett. 2004, 6, 3759.



Enzymatic Separation of / Thymidine

O
T

PCBO

PSL-C
O

PCBO
O

OH
T

+

PCBO

 : 
8 : 2

Buffer/Dioxane
60 C; 164 hrs

PCBO PCBO
T

Rf = 0 51 Rf = 0 25
°

Results and Conclusions:Results and Conclusions:

8 : 2 Rf  0.51 Rf 0.25

Industrial Waste

Results and Conclusions:
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separated 

Results and Conclusions:

 A sample of “Real Industrial Waste” containing / anomers was 
separated 

 Hydrolysis of the 5’-OH in -anomer was selectivity using PSL-C 
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 Both products were easily separated after chromatography

 A very attractive protocol for the isolation of -thymidine from waste

J. García, S. Fernández, M. Ferrero, Y. Sanghvi & V. Gotor
J. Org. Chem. 2006, 71, 9765.



Novel Chemoenzymatic Synthesis
of D Glucose 6 Phosphateof D-Glucose-6-Phosphate
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 Hydrolysis of the 6-OAc group was selectivity using CRL
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 Anomerization at the C 1 was not observed during hydrolysis

 MM was used to support the observed selectivity with CRL

Rodríguez-Pérez, T.; Lavandera, I.; Fernández, S.; Sanghvi, Y.S.; Ferrero, M.; Gotor, V. 
Euro J. Org. Chem. 2007, 2769-2778.



Syntheses of Glucose-Nucleoside Conjugates
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OAc

O

AcO
AcO

AcO

P
O

8a i
R1= Nucleoside

O

OH

O

HO
HO

HO

P
O

1. Tetrazole, MeCN
5 min
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a, B= U
b, B= T

e, B= Hx
f, B= ACHNMe2c, B= 5-I-U; R= Lev

RO RO OR h, B= ABz; R= Ac
i, B= CAc; R= Acd, B= 5-I-U; R= Lev g, R= Ac

R2= c, B= 5-I-U; R= H d, B= 5-I-U; R= H

Hx= HypoxanthineLev= COCH2CH2COCH3

f, B= A
g, R= H h, B= A; R= H

i, B= C; R= H
a, B= U
b, B= T

e, B= Hx

Rodríguez-Pérez, T.; Fernández, S.; Sanghvi, Y. S.; Detorio, M.; Schinazi, R. F.; Gotor, V.; 
Ferrero, M. Bioconjug. Chem. 2010, 21, 2239-2249.



Molecular Modeling Studies on CRL Selectivity

In addition of the six key H-bonds, peracetylated
glucose forms an additional H bond between

P l d l f i i h CR bi di i

-glucose forms an additional H-bond between
Ser450 and carbonyl group of anomeric acetyl
group (bond f)

Peracetylated -glucose conformation in the CRL binding site



Molecular Modeling Studies on CRL Selectivity

Just three of the six key H-bonds remain in the

P t l t d  l f ti i th CRL bi di it

y
transition state of peracetylated -glucose

Peracetylated -glucose conformation in the CRL binding site



An Improved Route for the Synthesis of 2´-O-Me-A

Hazardous Reagents

Old Route:

O AHO O AHO O AHOCH3I/NaH/DMF
+

HO OH O OH HO O MeMe

Difficult separation of 2'-O-Me-A

Safer ReagentsNew Route:

p-Ts-OMe/KOH/DMSOO AHO O AHO O AHO
+

HO OH O OH HO O MeMe

Enzymatic separation of 2'-O-Me-A from 3'-O-Me-A

Martinez-Montero, S.; Fernández, S.; Rodríguez-Pérez, T.; Sanghvi, Y.S.; Wen, K.; Gotor, V.; Ferrero, M. 
Euro J. Org. Chem. 2009, 3265-3271.



Enzymatic Separation of 2´-O-Me-A from 3´-O-Me-A

O AHO

PSL C

O ALevO 2'-O-Me-A

HO O Me

+

PSL-C
THF, RT, 5 d LevO O Me

+ Organic Extract

O AHO N
OLev O AHO

O OHMe LevO O Me

+

W t S l bl3'-O-Me-A Water Soluble

 An efficient Green synthesis of 2´-O-Me-A and 3´-O-Me-A has been developed An efficient Green synthesis of 2 O Me A and 3 O Me A has been developed
 First report on the chemoselectivity demonstrated by PSL-C

 Offers a direct route to 3´-O-Lev-protected 2´-O-Me-A

 Demonstrated on large-scale without deactivation of lipase



Improved Synthesis of 3´-O-DMT Nucleosides

OH L O

Enzymatic Step Chemical Step
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Lev.O
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HO HO DMTODMTO

Results:
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3´-O-DMT protected nucleosides
I Lavandera J Garcia S Fernández M Ferrero V Gotor and Y Sanghvi

 Use of difficult to remove TBAF was avoided
 Use of neutral conditions for Lev. Deprotection furnished high yields of

3´-O-DMT protected nucleosides
I Lavandera J Garcia S Fernández M Ferrero V Gotor and Y SanghviI. Lavandera, J. Garcia, S. Fernández, M. Ferrero, V. Gotor and Y. Sanghvi                                    
Org. Process Res. Dev. 2006, 10, 581.
I. Lavandera, J. Garcia, S. Fernández, M. Ferrero, V. Gotor and Y. Sanghvi                                    
Org. Process Res. Dev. 2006, 10, 581.



Synthesis of Anti-HIV Nucleosides
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ddI: Anti-HIV

Results:Results:Results:
 Over 24 novel bicyclic nucleosides were synthesized
 All nucleosides were screened for anti-HIV activity and Inosine analog 

Results:
 Over 24 novel bicyclic nucleosides were synthesized
 All nucleosides were screened for anti-HIV activity and Inosine analog 

was found to be most active 
 These nucleosides exhibit N-conformation and are acid stable
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using Adenosine deaminase (ADA)
A. Diaz-Rodriguez, Y. Sanghvi, E. Theodorakis, S. Fernández, M. Ferrero and V. Gotor                          
Org. Biomol. Chem. 2009, 7, 1415-1423.

g y g
using Adenosine deaminase (ADA)
A. Diaz-Rodriguez, Y. Sanghvi, E. Theodorakis, S. Fernández, M. Ferrero and V. Gotor                          
Org. Biomol. Chem. 2009, 7, 1415-1423.gg



Synthesis of 3´-O-Acetal Protected
N l id B ildi Bl k f NTPNucleosides as Building-Blocks for NTPs

O BO
Bz

O BO
BzMgBr2 NH4OH O BHO OOO

HO
ACN/RT

20 h O
R

MeOH/RT
12-24 h

4

O
R

O BO

O
R

P
O

OH
OP

O
O

OH
P
O

HO
OH

Results and Conclusions:Results and Conclusions:

B = T, CBz, ABz, GiBu

R = THP, MTHP, THF O O
O

MeO
PCR Applications

Results and Conclusions:

 Short protocol vs. multi-step chemical protection/deprotection procedure 

 Excellent yield for 3´-O-acetal protection with use of MgBr2 in acetonitrile 

Results and Conclusions:

 Short protocol vs. multi-step chemical protection/deprotection procedure 

 Excellent yield for 3´-O-acetal protection with use of MgBr2 in acetonitrile ce e t y e d o 3 O aceta p otect o t use o g 2 aceto t e

 Use of traditional PTSA and CSA also furnished the 3´-O-acetals
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ce e t y e d o 3 O aceta p otect o t use o g 2 aceto t e

 Use of traditional PTSA and CSA also furnished the 3´-O-acetals

 Useful intermediate for orthogonal protection of nucleosides

 These nucleosides are key building-blocks for the synthesis of NTPs for PCR  These nucleosides are key building-blocks for the synthesis of NTPs for PCR 

Rodríguez Pérez T ; Fernández S ; Martinez Montero S ; González Garcia T ; Sanghvi Y S ; Gotor V ; Ferrero MRodríguez-Pérez, T.; Fernández, S.; Martinez-Montero, S.; González-Garcia, T.; Sanghvi, Y.S.; Gotor, V.; Ferrero, M.
Euro J. Org. Chem. 2010, 1736-1744.



Role of Sugar Conformation in CAL-B Catalyzed 
Levulinylation of NucleosidesLevulinylation of Nucleosides
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Selective 5'-O-acylation

Results and Conclusions:

 Among 15 nucleosides tested, analogues that presented sugar with N-
conformation are acylated at higher ratios and with better selectivity
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B (ribo-, 2´-O-Me, and 2´-F have higher % of N-conformation in solution)
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 The MM studies also confirmed that the base moiety (purine or pyrimidine) The MM studies also confirmed that the base moiety (purine or pyrimidine) 
does not have any significant influence either on the rate or selectivity of 
the acylation reaction using CAL-B 

 The MM studies also confirmed that the base moiety (purine or pyrimidine) 
does not have any significant influence either on the rate or selectivity of 
the acylation reaction using CAL-B 

Martinez-Montero, S.; Fernández, S.; Sanghvi, Y.S.; Gotor, V.; Ferrero, M.
Euro J. Org. Chem. 2012, 5483-5490.



Batch vs. Continuous Flow Processes

Batch Process:
- Erlenmeyer flask

Continuous Flow Process:
- Pump

34

- Orbital shaker
- Reaction in suspension

p
- Column filled with enzyme
- Reaction in solution



Continuous Flow Enzymatic Process

Scale-up: from 1 g to 10 g and 25 g

BO
O.Lev

• 25 g of T• 10 g of T

HO

25 g of T

• Ratio T:CAL-B 1:0.5

• Reaction time: 7 h

10 g of T

• Ratio T:CAL-B 1:0.5

• Reaction time: 6 h • Reaction time: 7 h

• Yield:

96% ( d ) 93% it

• Reaction time: 6 h

• Yield:

93% ( d ) 91% it 96% (crude); 93% purity

70% (cryst.); >99% purity

93% (crude); 91% purity

75% (cryst.); >99% purity



Chemoenzymatic Syntheses of 3´- or 5´-O-DMT
Protected Abasic NucleosidesProtected Abasic Nucleosides
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2 4
83%

DMTCl, Py
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8 2 4 5

Results and Conclusions:

High selectivity for both acylation and hydrolysis is retained for abasic 
moiety – participation of base is not necessary!

Rodríguez-Pérez, T.; Fernández, S.; Sanghvi, Y. S.; Gotor, V.; Ferrero, M.
Org. Biomol. Chem. 2011, 9, 5960.



Biocatalysis is leading the way…

Enzymes are a “Master Chemist” that rarely fails

Enzymes are produced from renewable resources
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Chemists and Biologists need to work together to 
make it happen and opportunities are endless…

Chemists and Biologists need to work together to 
make it happen and opportunities are endless…



Final Thought…

“In an ideal chemical factory there is strictly speaking no waste but onlyIn an ideal chemical factory there is, strictly speaking, no waste but only 
products. The better a real factory makes use of its waste, the closer it gets 
to its ideal, the bigger is the profit." 

A W von Hofmann (1884)A. W. von Hofmann (1884)
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