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Introducing our new 
perspectives series
In a world where global challenges and advances in technology bring both uncertainty and 
new possibilities, the chemical sciences have a critical role to play. But what will that role 
be? How can we maximise the impact we make across academia, industry, government and 
education? And what actions should we take to create a stronger, more vibrant culture for 
research that helps enable new discoveries?  
Our perspectives series addresses these questions through four lenses: talent, discovery, 
sustainability and knowledge. Drawing together insights and sharp opinion, our goal is to 
increase understanding and inform debate – putting the chemical sciences at the heart of 
the big issues the world is facing.

 Discovery
Chemistry is core to advances across every facet of human life. But where 
do the greatest opportunities lie? How will technology shape the science 
we create? And what steps should we take to ensure that curiosity-driven 
research continues to unlock new opportunities in unexpected ways?

 Sustainability
Our planet faces critical challenges – from plastics polluting the oceans, to the 
urgent need to find more sustainable resources. But where will new solutions 
come from? How can we achieve global collaboration to address the big 
issues? And where can the chemical sciences deliver the biggest impacts?

 

 Talent
Talent is the lifeblood of the chemical sciences. But how do we inspire, 
nurture, promote and protect it? Where will we find the chemical scientists 
of the future? And what action is required to ensure we give everyone the 
greatest opportunity to make a positive difference?

 

 Knowledge
Around the world research fuels scientific progress but the way we are sharing 
new knowledge is changing. What are the big challenges of the digital era? 
How can open access become a global endeavour? And what do chemical 
science researchers really think about the constantly evolving landscape?

Find out more at www.rsc.org/new-perspectives
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s 1.  Digitisation is a global ‘megatrend’ impacting society at every level from individuals and 

households through to large companies and national systems.

2.  ‘Digital’ encompasses many types of data and of technologies that generate, interpret and 
act on it.  

3.  Digital technologies have huge potential in chemistry-using industry sectors. They will 
increase efficiency and sustainability across the chain from sourcing raw materials, to 
product development and manufacturing, to distribution, consumption and end of 
product life. 

4.  Scientists in universities, research institutes and companies are harnessing multiple digital 
technologies in R&D. The pace of development and adoption of digital tools is increasing 
and includes:

 • Computational modelling and simulation

 • I maging & visualisation

 • Machine learning (ML) and artificial intelligence (AI)

 • Advanced measurement and sensing

 • Robots and automated systems.  
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5.  Harnessing digital technologies for science R&D will enable scientists to deliver new 
benefits for society and the economy faster. Using digital technologies in R&D will enable:

 • Faster, cheaper, safer, more efficient innovation 

 • More effective diagnosis, prevention and treatment of disease 

 •  New sustainable technologies, from better batteries and solar cells to next generation 
plastics and resource efficient industrial processes 

 •  Environmental decision-making and regulation informed by high quality data and 
analysis from multiple sources 

 • Breakthroughs and new knowledge in physical, life and digital sciences. 

6.   Digital technologies will enable and challenge human scientists to go faster and to think at 
a higher level. They will extend human ambition and creativity, enabling multidisciplinary 
teams to solve bigger problems. 

7.   For the foreseeable future human input and supervision will be essential in harnessing 
data and digital tools for scientific discovery in a way that is efficient, effective and ethical.  

8.  The fundamental elements of the scientific method will not change, but digital 
technologies will transform each step in it and, crucially, the links between steps like:

 • Developing a question or goal

 • Generating a hypothesis and making predictions

 • Experimentation, observation and measurement

 •  Interpreting data and drawing conclusions

 • Identifying avenues for further investigation and application. 

9.  Rather than ‘using digital for digital’s sake’, the optimal combination of digital techniques 
to develop and use depends on the research question, target application and wider 
societal and economic context. 

10.  The volume of scientific data and the sophistication of techniques to collect and 
interpret it will continue to increase. There are huge opportunities to harness this data 
to bring new insights, make discoveries and inform decisions. There are also significant 
challenges in sharing and in rigorously interpreting data. 

11.  To harness the chemistry-digital interface we need new digital skills, roles and careers in 
science discovery. New multidisciplinary collaborations, communities and capabilities 
will also be crucial. 
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12.  Leadership and strategic vision, combined with insights from active researchers, will be 
key to ensuring we seize the opportunities at the chemistry-digital frontier, considering 
dimensions like:  

 •  Breakthroughs and disruption: What are areas that need urgent disruption and where 
digital capabilities will accelerate breakthroughs?

 •  Complexity: What are areas where conventional techniques simply cannot handle the 
levels of complexity involved?

 •  Transdisciplinary problems: What are the challenges that are too big for one lab, 
company or discipline to solve? 

 •  Key enabling facilities: What technologies, platforms and capabilities could have a 
transformative impact across multiple science discovery and application areas? 

Examples of possible focus areas are: 

 •   Sustainable energy e.g. next generation batteries or breakthrough catalysts to enable 
low carbon fuel  production.

 •  New medicines & diagnostics to enable prevention, early detection and treatment 
of everything from bacterial infections, tropical and emerging diseases to cancer, 
dementia and obesity.

 •   Predicting and reacting to environmental impacts using multiple, distributed, real-
time sensing systems and models. 

 •  Tackling the ‘plastics problem’ will involve science and technology innovation 
challenges including new ways of designing and making polymer building blocks and 
plastic recycling behaviours and technologies. 

 •  Key enabling platforms combining infrastructure and expertise in areas like 
automation of synthesis or formulation, high performance computing, modelling, 
data-sharing and advanced data analysis or measurement. These platforms can 
be connected to enable transfer of data and samples from one to another, and will 
underpin advances in multiple challenge and discovery areas.   

13.  There are many opportunities for everyone to push forward the chemistry-digital 
interface for the benefit of society: for individuals; for the chemistry community in 
partnership with other communities in the physical, life and digital sciences; as well as for 
research and teaching institutions, companies, funders and governments.

Key areas for action include:

 •   Lifelong training in digital skills.

 •   Roles and career progression for digital experts in research outside digital industries.

 •   Fostering multidisciplinary collaborations and communities.

 •   Supporting and enabling data sharing.

 •   Leadership and advocacy for the digital futures of science R&D.
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‘Digitisation’ or ‘digitalisation’ is a major political, economic and public focus, with 
significant investments and media attention around the world. It is a strategic priority 
for governments, industry and institutions globally. Discussions often concentrate on 
AI and robotics, including opportunities for growth and prosperity as well as concerns 
about ethical issues and threats to skills and employability. 

Digitisation in fact involves many different types of technologies and concepts, which overlap 
and are interdependent. It includes robotics, sensors, high performance computing, 3D 
printing and wireless communications systems, along with data mining and supervised or 
unsupervised machine learning (roughly speaking what is often referred to as AI).

09



There are cross-cutting advances in algorithms, optimisation, modelling, simulation, 
visualisation, cryptography, as well as protocols and standards enabling interoperability of 
systems. There are concepts that leverage, integrate and enrich technologies and methods 
e.g. blockchain, data streaming, digital twins, cloud computing, and the Internet of Things.

Digitisation permeates many layers across society and the economy, in addition to the 
digital or IT sector itself. Digital technologies have implications and bring opportunities 
for industries from finance, law and logistics to pharmaceuticals, materials and energy, as 
well as for private and public systems across healthcare, security, regulation, transport and 
education. The paradigm characterised by this fusion between physical, biological and 
digital ‘megatrends’ has been called the Fourth Industrial Revolution or Industry 4.01.  

More specifically in chemistry-using industry sectors, from chemicals, materials, 
pharmaceuticals, biotech and agri-tech to energy, automotive, aerospace, IT and consumer 
products, there are opportunities under the ‘digitisation’ umbrella across the spectrum from 
raw materials sourcing, supply chains, product development, R&D, manufacturing, logistics 
and distribution, sales and consumer testing.2 There are also opportunities to link these 
different dimensions in end-to-end or closed loop systems.

1  The Fourth Industrial Revolution, Klaus Schwab, Penguin (2016)

2  Strategic Innovation and Research Agenda, SusChem (2019)  
www.suschem.org/press-area/press-releases/suschem-publishes-new-strategic-innovation-and-research-agenda
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Strategic Advisory Forum & participants
In our Science Horizons project, we engaged with over 700 academic researchers globally 
to seek views on key trends and emerging research areas in the chemical sciences and its 
interfaces.3

Scientists have always developed and adopted new techniques, but we heard from 
researchers a new sense of excitement about the range of techniques that have come online 
in recent decades, the pace at which they are evolving and converging, and the quantity of 
data and potential insight they bring. These techniques range from advanced measurement 
and computational modelling to AI and robotics. 

We also heard a degree of scepticism about the extent to which big data, AI and robotics will 
be truly transformative in scientific discovery. This is set against a backdrop of high levels 
of public and private sector investment in digitisation globally as well as significant public 
concern about jobs and ethics.  

In our first Strategic Advisory Forum we set out to gain a more in-depth understanding of 
the long-term promise of and concerns about the use of data and digital technologies for 
scientific discovery. We invited experts from different scientific fields and sectors to discuss 
and set out a Digital Futures vision.

3  Science Horizons, Royal Society of Chemistry (2019)  www.rsc.org/new-perspectives/discovery/science-horizons
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The participants in the Forum were: 

• Prof Varinder Aggarwal Professor of Synthetic Chemistry, University of Bristol 

• Dr Niklas Blomberg Director, ELIXIR

• Prof Muffy Calder Professor of Formal Methods, University of Glasgow

•  Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the 
Materials Innovation Factory

• Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

• Dr Martin Jones Deputy Head of Microscopy Prototyping, The Francis Crick Institute

•  Prof Jacqueline McGlade Professor of Sustainable Development and Resilience, 
University College London, and Professor of Public Policy and Governance, Strathmore 
University

• Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley

•  Dr Edward Pyzer-Knapp Research Lead, Machine Learning and Artificial Intelligence, IBM 
Research UK

•  Dr Elizabeth Rowsell Corporate R&D Director, Johnson Matthey

•  Dr James Weatherall Vice President, Data Science & AI, AstraZeneca

•   Dr Horst Weiss Vice President, Knowledge Innovation, BASF SE

•  Dr Chris White President, NEC Labs America

•  Prof Sophia Yaliraki Professor of Theoretical Chemistry, Imperial College London

This vision set out in this white paper will inform long-term thinking by the Royal Society 
of Chemistry (RSC) Leadership Team and Board of Trustees, and we hope will be useful 
for other individuals and organisations considering the potential of data and digital 
technologies in the context of scientific discovery and application. 

We held the Strategic Advisory Forum in Burlington House, London on 16 September 2019, 
moderated by Greg Foot, Science Presenter and Producer, and held under the Chatham 
House Rule. This white paper is based on discussions at the Forum as well as pre-interviews 
with participants, but does not necessarily reflect the views of individual participants. The 
RSC is also grateful to Prof Lee Cronin, University of Glasgow and Dr Stefan Platz, AstraZeneca 
for interview insights. This white paper written by Dr Deirdre Black and Dr Wendy Niu at the 
RSC, which takes responsibility for any errors or omissions.

The images used in this white paper are taken from the accompanying video, 
which can accessed at www.rsc.org/new-perspectives/discovery/digital-futures
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Societal & economic benefits of 
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D This white paper focusses on digitisation in science R&D, identifying opportunities across the 
spectrum from fundamental discovery research to science targeting real-world applications. 
Digitisation in this context is relevant for universities, research institutes and R&D-intensive 
SMEs or large multinational companies, as well as for science-informed policy. 

It is important to cultivate and harness the interfaces between physical, life and digital 
sciences because of the potential to bring all three to a new level of discovery and impact. 
The Digital Futures discussion explored a future for scientific discovery and application in 
which natural scientists have harnessed diverse digital technologies to enable, accelerate 
and extend what they do today. This will build into a virtuous circle in which the natural 
and digital domains propel one another forward, generating important new research 
directions in both.

Data and digital technologies will enable scientists to answer questions and find solutions 
faster and more efficiently. They will enable scientists to tackle bigger problems, to think at 
a higher level and to uncover possibilities that humans alone would not have found. Key 
benefits include: 

• Faster, more efficient science discovery and innovation 

• New molecules and materials for energy, environment and health

• Better diagnostics and decision-making for environment and health

• Smart and resource efficient manufacturing 

In the context of science R&D, digital technologies include sensors and other measurement 
instruments, modelling and simulation techniques, data sharing and knowledge 
management systems, machine learning, data mining, visualisation, robots and 
automated systems. There are further underpinning areas like algorithms, optimisation 
methods, abstractions and representations, mathematical modelling and theory, digitally 
enabled closed-loop systems, hardware like high performance computers and storage, 
software and graphical user interfaces (GUIs).  

What to prioritise and where to focus effort, so that ‘digitisation’ of scientific discovery will 
have the most impact, is context dependent. It depends on the scientific question and the 
target application as well as on capabilities and priorities in research and innovation systems 
on local, national and international scales. We cover this in Sections 5 and 6. 

Faster, more efficient science 
discovery and invention 
Digital technologies will enable scientists to discover and innovate faster, making discovery 
and invention more efficient, reproducible and safer. This will bring benefits for multiple 
chemistry-using industry sectors – from chemicals, materials, pharmaceuticals and 
biotechnology to energy, automotive and aerospace – as well as policy, government and the 
digital technology sector.
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For example:   

•  Increasing the odds of finding new technologies quickly: Especially in areas like energy, 
environment and health where there are urgent challenges and a need for breakthroughs 
and disruptive technologies. 

•  Reducing cost and risk: Saving time and money that would have been spent pursuing 
options that look promising but ultimately are not safe, practical or commercially viable. 
This will shave years off the time spent ruling out leads that are ultimately dead-ends in 
everything from new medicines to new batteries. 

•  Reducing duplication by ensuring scientists have access to all relevant knowledge 
generated in the past and being generated now.  

•  Freeing up human time and capability to work on higher-level creative thinking by using 
digital technologies to do repetitive tasks. Robots are already able to do certain kinds of 
physical experiments thousands of times faster than humans, and computers can hold 
and process much more information than a human. 

•  Expanding exploration: Finding patterns and structures that human beings alone might 
not see or have time to reach – whether that is investigating all of the data generated by 
modern imaging instruments or exploring more of the possible molecular or materials 
structures that could physically exist. 

•  New digital innovations: As multidisciplinary groups tackle big challenges involving 
chemistry this will also push the frontiers of R&D in digital areas like machine learning, 
robotics, modelling and computer science. 
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New molecules and materials for energy, 
environment and health 
New molecules and materials are essential for everything from next generation medicines 
to sustainable energy materials to biodegradable or recyclable plastics. Digitalisation will 
transform chemists’ ability to design, make and modify materials and molecules to meet 
societal challenges.

For example:   

•  Health: Next generation therapeutics including new medicines and vaccines; new 
materials and formulations for drug delivery, wound healing, bone and tissue 
regeneration. These new therapeutics will be developed within the broader paradigms of 
personalised and systems medicine (see below).   

•  Energy: Materials for technologies like next generation solar panels, batteries and 
thermoelectrics. Targeting cheaper and more efficient technologies that have longer lifetimes 
in real-world conditions, use fewer rare earth or toxic elements and are more easily recycled. 

•  Environment: Materials for environmental applications from water and air purification to 
recyclable or biodegradable polymers. Non-toxic catalysts made from abundant elements 
to enable energy efficient transport and industrial processes. 

•  Disruptive technologies: Targeting breakthroughs in fuel and raw material production 
(solar fuels, hydrogen production, CO2 capture, storage and use), water harvesting, 
nitrogen production, new data storage and display technologies. 

Combining tools like computational modelling, data mining, AI, robotics and advanced 
measurement, scientists will predict, screen, discover and test new molecules and materials 
faster and more efficiently than ever before. They will also find molecules and materials that 
would never have been discovered without these tools. 
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Enhanced diagnostics and decision-making 
for environment & health  
Advanced sensors and sensor networks, combined with data streaming, modelling and 
visualisation, will enable monitoring and decision-making in multiple contexts, for example: 

Environment 

•  Precision environmental chemistry: Understanding how any combination of pollutants 
will interact with the local environment and how they will travel around the planet 
in air and ocean systems. Using a suite of digital technologies including modelling to 
understand complex molecular interactions that take place in the atmosphere, soil and 
oceans as well as sensors that can detect and monitor with high specificity in real-world 
conditions. 

•  Modelling and visualisation to enable environmental policy: Enabling science-
informed policy by using tools to represent predictions of climate models, flows of waste 
or the spread of disease. This can include simulating scenarios to predict impacts and risks 
associated with policy interventions, in order to inform decisions and the development of 
new policy and regulation.  

•  Keeping and sharing records to ensure regulatory compliance: Increasing the 
effectiveness of monitoring and regulatory compliance, using data and digital tools 
enables companies, governments and agencies to track and share data in standardised 
formats across the chain from suppliers and manufacturing to consumers and end of life.  

•  Maximising agricultural productivity and minimising food waste: Using sensors to 
detect the ripeness of a crop and therefore inform decisions about when to harvest a crop, 
deliver or consume a food product, and whether to apply pesticides in a particular section 
of agricultural land. 

Health

•  Precision and systems medicine: Using a range of diagnostic and measurement tools 
like imaging, spectroscopy and genomics, researchers will harness insights across multiple 
scales – from understanding the molecular origins of disease or of the interactions within 
cells to global patterns in patient populations – to develop prevention and treatment 
strategies with minimal side-effects for individual patients.  

•  Enabling clinical trials for rare diseases: Remote sensors and diagnostic tools that 
patients use at home make it possible to trial new therapeutics for patients who are widely 
geographically distributed or where it is not possible for them to come regularly to a clinic 
for monitoring. 

•  Monitoring and prompting adherence to medical treatments: For conditions such as 
asthma, monitoring the frequency with which a patient is taking medicine, reminding a 
person to take medicine and also picking up signs that someone may need to take more 
medication. 

•  Personal well-being and preventative medicine: Enabling people to make informed 
decisions based on data about everything from local levels of pollutants and content of 
their food to personal exercise levels or local weather conditions. 

•  Worker safety: Monitoring conditions in factories and plants across multiple sectors, 
including for corrosion, leaks and faults as well as for predictive maintenance. 

17



 

Smart and resource efficient manufacturing
Digital technologies enable cost-saving and efficiency in R&D and scale-up of technologies 
from laboratory to plant. Some examples are:  

Optimising industrial processes: Industrial processes involve a complex interplay between 
many different physical and chemical factors. They also depend on local conditions and 
equipment. It is challenging to optimise processes so that they yield as much product as 
possible in a way that is safe for workers, has minimal impact on the local environment and 
uses minimal energy. There are also overarching decisions about increasing the efficiency, 
safety and lifespan of existing assets as well as designing and building new plants. 

Comprehensive data collection across different elements of a process or plant can provide a 
real-time view of a system. Combined with data analysis and modelling techniques, chemists 
in industry will be able to better predict the impacts of potential changes to any system, 
enabling more systematic and agile optimisation decisions. 

Resource efficient manufacturing and products: Digital technologies enable companies 
to track energy and materials use across the whole pipeline from raw materials extraction to 
manufacturing and distribution through to the end of a product’s life, for example: 

•  Life cycle thinking: Acquiring the data needed to do product life cycle assessments, and 
using this data to make decisions about suppliers, manufacturing processes and product 
design. 

•  Advanced measurement and sensing techniques: From sensors that detect waste 
molecules or side products with high sensitivity to devices that monitor energy use in a 
plant or in a product.

•  Products and processes with lower environmental footprint: For example, new 
processes that run at lower temperature or use more sustainable catalysts or solvents, 
products made from abundant and non-toxic raw materials, or products that enable more 
efficient use of energy and materials with lower environmental impact.

•  Centralisation and decentralisation: Everything from having a smaller number of 
specialised testing facilities and optimising which samples or processes are tested 
where, to having decentralised or on-demand manufacturing to minimise waste and 
distribution footprints.   
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People, machines 
and scientific discovery

DIGITAL FUTURES: A NEW FRONTIER FOR SCIENCE EXPLORATION AND INVENTION

3

19



 

FURTHER
DEVELOPMENT 

INTERPRET

DATA 

MODIFY
HYPOTHESES & 

PREDICTIONS

RUN TESTAND 

GATHER DATA

DESIGN TEST

QUESTION
OR IDEA 

GENERATE
KNOWLEDGE

CREATE
HYPOTHESES &

PREDICTIONS

3 
 P

eo
pl

e,
 m

ac
hi

ne
s a

nd
 sc

ie
nt

ifi
c 

di
sc

ov
er

y Digitally extending and 
augmenting science discovery 

Digital technologies have the potential to enhance every aspect of the scientific process. 
The fundamental elements of the scientific method – developing a question or goal, 
generating a hypothesis and making predictions, experimentation and observation, 
measurement and interpreting data, and drawing conclusions or identifying avenues for 
further investigation – will not change, but digital technologies will transform each of these 
steps and, crucially, the links between them.4 

  “ ”
What will be really disruptive is how digital tools will push us to develop new or different ideas and 

hypotheses, they will amplify human creativity, identifying new possibilities or opportunities.
Dr Elizabeth Rowsell, Corporate R&D Director, Johnson Matthey 

 “ ”
The key thing that digital will enhance in science is the connectivity between steps, making best 

use of all existing knowledge so that you go maximally informed into each stage in the discovery, 

development and innovation process, storing and sharing knowledge each time you do new 

experiments.
 Dr Horst Weiss, Vice President, Knowledge Innovation, BASF SE

4  See also Ezer D & Whitaker K, eLIFE (2019) 

https://elifesciences.org/articles/43979 
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Many scientists already use a suite of digital tools in research, including everything 
from computational modelling, advanced measurement and simulations to visualisation, 
machine learning and automation.  

Digitisation in chemistry will be a continuation of the advances we already see in areas 
like computational chemistry, synthesis and analytical science and holds the promise of 
opening really new fields, perhaps analogous to the genomics revolution.  

While in 10 years’ time we will not have fully ‘interoperable’ digital tools used universally 
across research and innovation, digital technologies will have accelerated progress in 
science discovery and application, automating some areas and expanding the possibilities 
and patterns humans explore.  

Digital technologies will not replace people, but they will extend and augment 
human capabilities. Some tasks that are done by humans as part of science today will be 
automated. However, new tools will not replace scientists or solve big, difficult challenges by 
themselves. We will need knowledgeable, skilled people to develop, maintain and upgrade 
robots, algorithms and code as well as to design and supervise digital systems.  

Moreover, digital technologies will overall free up time and both enable and push scientists 
to ask higher-level questions and go after bigger more complex challenges. As digital 
technologies find patterns and possibilities that a human brain cannot see, this will expand 
the options scientists consider in everything from deciding which experiments to carry out to 
what diagnostic signs to follow up on for medical or environmental interventions. 

By using digital technologies in many different and context-dependent ways scientists will be 
able to: 

•  think at a higher and more abstract level, with more time for creativity;

•   take on bigger and more complex challenges, linking end-to-end across scientific 
discovery and application; 

•  assemble a toolkit of techniques that will accelerate and enhance their research; and

•  work in new ways, collaborating across disciplines and countries to harness all relevant 
information.
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   “ ”
Digitisation is important across the whole spectrum in the pharmaceutical and biotech sector – 

from early stage R&D to late development to commercialisation. For instance at the very early stage 

of identifying promising leads for new medicines, computers can handle databases of millions of 

molecules, and even suggest novel molecular designs. Getting computers to search these large spaces 

means that not only do we consider a wider range of possibilities, but we free up our scientists to 

spend more time on more complex higher-level creative thinking and other scientific tasks.

Dr James Weatherall Vice President, Data Science & AI, AstraZeneca 

   “ ”
Data and digital technologies have great potential to improve the quality of work in science. Like 

having a higher resolution microscope or a faster computer, they open new paths to help generate 

and digest information, to create knowledge and then to manage knowledge. Ultimately, digital 

techniques are tools to help our smart people. An algorithm can deal with ten parameters better 

than a human brain, but knowing which ten and how to combine them is where you need a person.
Dr Horst Weiss Vice President, Knowledge Innovation, BASF SE

As researchers work more closely with digital technologies, interactions between 
people and machines need to be as seamless as possible. Researchers who are not 
digital experts will need to convey what they want to do, and to interpret and use results and 
recommendations from digital tools. The following are important factors when designing 
future human-machine interactions:

•  Explanation: When recommendations from digital technologies are fully explained 
researchers can better understand the decisions they make based on them. This is 
particularly important when a model or algorithm is suggesting an unexpected route of 
action, say for experimental design. Potential benefits of using the digital technology are 
negated if researchers ignore the suggestion. 

•   Trust: Researchers may not trust ‘black box’ systems about which they do not understand 
the detailed workings. Developers of digital tools can build trust, particularly with non-
expert users, by documenting data sources and explaining the methods and assumptions 
used.

•   Intent: Currently, chemistry researchers typically interact with digital technologies using 
direct instructions. An intent-driven paradigm would be more akin to the way humans 
communicate, but requires a level of interpretation on the part of technology.

With more widespread adoption, digital technologies continually become 
‘commoditised’ for new applications in natural sciences research. As for any new 
scientific tools, it is important to have domain experts from the chemistry and digital spheres 
working together to develop and apply new techniques. Once they are commoditised, users 
who are chemistry domain experts will still need enough knowledge and skill to critically 
evaluate the outputs or guidance from any technique. 
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We must ensure that adoption of digital technologies is within robust ethical 
frameworks. This includes ensuring that there are secure protocols for handling data 
about people and that there is appropriate supervision and review of decision-making that 
depends on digital tools like machine learning, predictive modelling and sensing. Predictive 
models and machine learning may be based on incorrect assumptions, incomplete 
information, unreliable literature and biased or limited data. Sensors may be faulty and 
an algorithm may not do what a user assumes it does. It will be essential to have experts 
from the digital and chemistry domains co-developing and testing techniques and their 
applications in scientific discovery. 

 “ ”
A faulty sensor in a network is more dangerous than a sensor that does not work at all. You’ve 

got to factor this into any design and especially decision-making based on sensors or networks 

of sensors.

Prof Muffy Calder Professor of Formal Methods, University of Glasgow 

 

 “ ”
Trust depends on language and education. You’re still an expert in something but need to have the 

ability to communicate with others. A big barrier is that the use of words is very different in different 

disciplines. What I mean by “proved”, “certain” or “complete” may be very different from someone in 

another discipline.

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

 “ ”
Trust in a system comes down to integrity. We need to be much more strict about documenting what 

system components, like sensors, are doing, and about the provenance of data.
Prof Jacqueline McGlade Professor of Sustainable Development and Resilience, University College London 
and Professor of Public Policy and Governance, Strathmore University

 “ ”
Ethics is really important. We should not rely blindly on some interpretation because there is a lot of 

data or some clever analysis of it. Ethics is more important in certain circumstances than others. 

If there is a mistake in materials discovery you may lose time and money but no one gets hurt, but in 

areas like precision healthcare or the environment we should not simply accept the first outputs or 

options generated from a digital tool.

Prof Sophia Yaliraki Professor of Theoretical Chemistry, Imperial College London
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It is important not to have ‘digital for digital’s sake’. Researchers need to understand the 
benefits and limitations of existing digital tools to determine the optimal combination of 
digital techniques for their particular research question or target application. For example:

•   Options for generating hypotheses and designing experiments will depend on different 
types of modelling across multiple scales, the availability of underpinning theoretical 
insights, knowledge about application contexts, existing experimental data and intuition. 

•  One measurement technique may be easier to automate than another. 

•  Structures like molecules may be easier to represent in a standardised way than 
formulations or colloids. 

•   We are likely to see major improvements in our ability to predict reactions and synthesis 
routes in some areas of synthetic organic chemistry much sooner than for heterogeneous 
catalysts, cathode materials or alloys. 

•   There will be a spectrum from situations where you can design a material on a computer 
to those where you get a rough guide as to where to start, with everything in between. 

Questions about the prioritisation of wider benefits of digital technologies and of where and 
how to foster the interface between the digital, physical and life sciences are discussed in 
Section 5. 

 “ ”
Most science and technology challenges are multi-length scale and complex, so you need to use a 

variety of techniques that give different insights on a problem and answer different questions.

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory 

Digital technologies will make science more reproducible. This is important in order to 
validate results and to reduce duplication of both successful and unsuccessful avenues of 
inquiry, meaning that when something is done in one lab others can build directly on it, 
rather than ‘reinventing the wheel’. 

This applies to building on science that has been done in past and, using data streaming, 
should become possible in real-time for people working in different locations on the same 
challenge. As an example, organic synthesis experiments can be incredibly complex, with 
small changes in experimental parameters significantly altering outcomes. Highly accurate 
automated systems can give chemists more precise control over experimental parameters, 
automatically recording data throughout an experiment. This makes it possible to repeat 
the experiment and to track errors or deliberate changes as researchers optimise a process 
or property. 

 “ ”
 Imagine a world where we have a chemistry lab with a wide range of cameras and sensors in all 

the equipment. By sensing everything a student researcher is doing as they go through a synthesis 

process, we’re capturing all that knowledge and information without adding to the workload.

Dr Chris White President, NEC Labs America
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  Enabling higher- 
level problem 
solving and 
abstract thinking
Using a blend of diverse digital tools 
scientists will be able to work in new 
ways, at a higher level of abstraction 
and on bigger problems. Being able to 
do things orders of magnitude faster 
opens new possibilities in terms of the 

challenges or questions people pursue. Computers can also hold more data than a human 
brain, and digital tools can systematically explore exponentially more possibilities, searching 
for structures and optimising functions. People will work with digital technologies to 
associate meaning with this information, using it to draw conclusions or make decisions.

Multiscale and multi-modal insights
Researchers in many fields are integrating different types of measurement, modelling 
and theory to gain insights into physical and biological systems. They are also making 
connections between our understanding of structure, properties and interactions of systems 
from nano to micro to macro scale. For example: 
•  Whole-cell understanding: Researchers combine many different measurements 

and insights to gain deeper understanding of cells – these include imaging, protein 
metabolomics, genome sequencing, small molecule probes a nd modelling. This 
enables a system-level approach to designing new drugs and treatments, as researchers 
can predict and control the impact a treatment will have on multiple components and 
pathways within a cell.  

•   Monitoring and understanding pollution: Researchers use a range of measurements 
from ground and ocean-based stations as well as airborne and satellite instruments. 
Using modelling and visualisation they work to predict and understand everything from 
molecular level questions about impacts on human health and local environment to 
questions about how pollutants spread through the soil, oceans and atmosphere globally. 

 “ ”
We’re increasingly seeing an interplay between different modalities as scientists bring 

together techniques like proteomics, metabalomics, sub-cellular sampling and imaging 

techniques, along with genome sequencing and chemical interventions like genome regulation 

and small molecule probes.

Dr Niklas Blomberg Director, ELIXIR 

 “ ”
People wanted to probe the entire cell before, but couldn’t do it. Now we have the tools and techniques 

to answer the bigger question. Eventually we might probe the entire human – not in the next 10–20 

years, but it will happen one day. 

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford
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Building application insights and constraints into design and discovery phases 
Digital technologies enable more ‘end-to-end thinking’. Building in multiple higher-level insights and 
constraints from target applications right from the beginning saves time and money. For example: 
•  Materials: There are many criteria that determine the suitability of a material for applications: 

typically the material should be relatively cheap and easy to process, non-hazardous, efficient 
and stable under real-world operating conditions, and easy to recycle. Depending on the 
application, R&D may be targeting robustness in environments that have high temperature, 
moisture or alkalinity. It may seek a range of opto-electronic, electrical, catalytic or mechanical 
properties. There may also be goals to use minimal amounts of elements like mercury, indium 
or platinum, or to ensure materials that satisfy regulations for applications in health. There 
is no one-size-fits all approach, but using a combination of computational modelling, high 
throughput experimental screening and advanced characterisation can eliminate leads that 
would fail at application stage. This both accelerates discovery of useful materials and reduces 
the cost of discovery and of applications testing or clinical trials. 

•   New drugs and therapies: Researchers are building in knowledge about variations in 
efficacy and side effects of medicines for different individuals and populations. Taken 
together with understanding across multiple scales – starting with molecular level insights 
on how a drug molecule binds to a target or of protein-protein interactions, and moving up 
through to probing a cell, tissue or organ – research has moved away from the paradigm of 
designing treatments that target a single component or pathway with little understanding 
of potential side effects. Instead, researchers take a system-level approach to predict and 
control the precise impact a treatment will have throughout the human body. 

•   Scale-up: Often the way that you first make a new molecule or material in the lab is not 
the best way to make it on large scales for application. There are therefore iterations 
between early discovery and scale-up from both a production and a product point of view. 
There are opportunities for interactions between humans and digital tools in optimising 
scale-up, for example using iterative intelligent modelling and automation to explore 
around a starting set of properties and experimental or process set-ups.

 “ ”
In the UN, we see the results of science hitting the road for decision-making. People don’t just think 

about tackling one risk, followed by another, followed by another… now we have the capability to 

think about a multi-hazard complex system.
Prof Jacqueline McGlade Professor of Sustainable Development and Resilience, University College London, 
and Professor of Public Policy and Governance, Strathmore University

“ ”
Materials properties are a chain of links and a material is only as good as the weakest link in the chain. You 

need to consider the whole cohort of properties that matter to a commercial product. Digital technologies won’t 

just give you the answer, but say you screen 100,000 formulations for a battery cathode material, looking at 

capacity, voltage, stability etc. You might find 100 promising avenues. Then you can think about the critical 

things you’ve got to have, the most difficult properties to obtain and what you can rule out. This is a guide as to 

where to focus, and where not to focus, next.
Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley

“ ” 

Catalysts for use in transport and industry often contain a metal. If we can understand at an 

atomistic scale what the metal is doing and where it needs to be while in use we can figure out how to 

use less of it and to recover and reuse it. Multiscale modelling and in-operando measurement are key 

for resource efficient invention.
Dr Elizabeth Rowsell Corporate R&D Director, Johnson Matthey
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Digital tools like machine learning, data mining, modelling and automation can enable 
scientists to discover useful patterns in data and make decisions informed by those patterns, 
even without a complete understanding of why the pattern exists. The pattern itself often 
generates interesting fundamental questions. Some examples are:    

•  Health: Statistical techniques, including machine learning, can identify parameters that 
are a ‘surrogate’ for patient benefit. Drawing on multiple types and sources of data, they 
can provide researchers and clinicians with an understanding about treatments that are 
likely to be suitable for a patient. Alternatively, an individual may get a cue to consult their 
doctor based on comparisons of a set diagnostic measurements with their equivalent 
when the person was previously ill. These techniques generate many new fundamental 
questions about why certain parameters or patterns relate to the presence or likely onset 
of a medical condition. 

•  Formulation: Scientists may be targeting a property for a consumer product like a 
biodegradable polymer or a formulation giving a clear shampoo or detergent. Using a 
combination of machine learning and automation, they might find a correlation between 
a recipe and a property, or a set of heuristics that link to a property. The initial dataset 
and analysis will give ideas for designing new experiments, both to optimise formulations 
and to pursue fundamental questions about, for example, the molecular properties of 
dispersions, or why formulations look or behave as they do. 

•  Empirical learning: Tools which use machine learning to extract patterns from existing 
empirical data are especially powerful in areas that are hard to fully describe by theory but 
where large volumes of data could be available, such as drug discovery and formulation 
development. An example is polymeric foams, a very complex area where there is no 
rigorous theory or complete underpinning understanding. However, even without a 
detailed first principles understanding of how a foam builds, scientists can use all data 
about performance in real-world environments, processing steps and characterisation, 
and recipes or composition, to see useful relationships between starting conditions, 
processes and foam properties. 

•   Exploring higher dimensional data: Scientists usually look for trends in data represented 
in two or three dimensions, sometimes with time sequences, but with AI can discover and 
investigate patterns in many more dimensions. For example, an imaging mass cytometer 
can have as many as 40 different channels. 

“ ”
Computers now can hold far more information and complexity, and explore more possibilities than 

an individual human brain. We need to harness this to help us see patterns and options that a human 

being would not find.
Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

“ ”
The idea that we break complex systems down to sub-components and find the connections is only 

needed if we have a limited amount of sensing and data. Now there’s an opportunity to learn every 

time we gather data, and the speed at which we figure things out will dramatically increase.

Dr Chris White President, NEC Labs America
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Increased speed enabling higher-level thinking

In addition to saving time and money, being able to do things faster can make it possible for 
researchers to develop new higher-level and more complex questions. For example: 

•  Computational modelling: With increased computing performance, calculations that 
used to take months or years can now be computed in hours or minutes. An example 
is materials science, where rather than focusing on understanding structure-property 
relationships for one or two specific materials, researchers can now seek insights across 
families of materials and can identify the underlying principles and mechanisms of action.   

•  Faster experimentation: If a synthesis step that previously might have taken a year to 
complete can be done in a few hours, that means researchers can target more and more 
complex syntheses, focussing human effort on the most challenging steps that cannot be 
automated. Researchers can explore questions about general classes of and connections 
between properties, structures and processes. 

•  Data mining: The ability to search through all available historical and current data in a 
way that an individual cannot creates possibilities to frame new problems and look for 
connections and correlations that would not have been possible before. 

“ ”
With automation, we can do some materials synthesis experiments 1000 times faster than an 

individual person can. This kind of step-change in the number of experiments we can do means we 

can afford to tackle bigger questions. We can be more ambitious in the challenges we take on rather 

than incrementally exploring around what we already know.

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory

“ ”
If you were a student in crystallography 20 years ago, you solved the structure for a single interesting 

protein in your PhD. Now computers and robots routinely solve 10s or 100s a month. This means you 

can ask totally different questions. In my field that allows you to think in terms of multi-component 

systems - you move from designing something that binds or interacts at one site in a particular 

way to designing something that impacts in exactly the way I would like it to with several different 

components of a system.

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

“ ”
My students work in a field that has been revolutionised in the last 20 years. From computing one 

property of one material in a year, they can now perform hundreds or thousands of computations in 

a week. This allows you to answer different types of questions – higher-level questions. Not just how 

an ion moves in one crystal structure, but what kinds of structures enable fast ionic movement. This 

level of abstraction was not available 20 years ago in the field.

Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley
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Revealing unforeseen research directions and solutions 
As digital technologies expand human capability, there is the exciting prospect of 
transformational discoveries and opening completely new research directions. Digital 
technologies will offer scientists hypotheses, observations and options that they may never 
have seen or considered to be optimal or interesting. In the same way that it would have 
been difficult to predict the wealth of insight and application heralded by the genomics 
revolution, it is impossible to predict what these new directions will be, but some examples 
could be: 

•  Discovering new reactions as well as new molecules and materials with structures or 
properties that we do not yet know are able to exist

•   Generating new research questions in the digital sphere, for example new challenges 
in robotic science and engineering, in machine learning and algorithm development, 
or questions about the mathematical and computational abstractions that describe 
chemical structures and processes. 

•  Revising our fundamental assumptions about systems. Examples of assumptions 
that we have already seen, at least partially, overturned include that a particular small 
molecule drug interacts only with its target; that just one protein, or gene, is implicated in 
a particular disease; and, that a particular G-protein receptor has just two states, ‘on’ and 
‘off’, when in fact there is a partial or influencing state depending on a neighbour.  

•  Designing systems for decision-making and applications. Scientists can be part 
of framing transdisciplinary problems at a higher level and designing systems in the 
optimal way to answer a question or inform a decision. An example is big picture thinking 
about questions related to chemicals in the environment, starting with articulating the 
decisions that a local or national government, regulator or company needs to make. This 
may involve inter-related technical choices about the kinds of sensors that are needed, 
how they will be networked, how the data will be used and by who, how the data will be 
represented and interpreted, all framed within wider considerations such as risk, cost, and 
acceptable levels of uncertainty or thresholds for action.  
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“ ” 

As a computer scientist, what interests me is not only how ‘digital technologies’ might transform 

chemistry, but the kinds of new computer science research questions this transformation will 

generate. Do we need new abstractions and representations to talk about chemical processes and 

structures in a cyber-physical-chemical world? How do you develop a hypothesis, what processes do 

we want to understand and what do we want to model or measure?

Prof Muffy Calder Professor of Formal Methods, University of Glasgow

“ ”
Using a blend of robotics guided by computation means we can do things faster, but what’s really 

exciting is the prospect of finding things we wouldn’t discover otherwise. For example we’ve never 

discovered a heterogeneous catalyst mixture with 20 components, but I can imagine that kind of 

scenario evolving from intelligent robotic discovery. This would then generate a whole new scientific 

challenge for humans, which is to figure out why that catalyst works.

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory

 “ ”
Chemists discover and invent new properties. What I’m excited to see is digital technologies 

making it possible to discover some really novel molecular and materials structures with 

extraordinary properties.

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

“ ”
We can be sure that digitisation in chemistry will lead to avenues that we can’t even predict. 

For example, when the Human Genome Project finished we went after mapping the proteome and the 

brain, and more will come.

Prof Sophia Yaliraki Professor of Theoretical Chemistry, Imperial College London
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Better ways of working 
Automated closed-loop systems
Scientific discovery and application involves sequences of steps, generally with iterations 
between individual steps as well as around the whole cycle from developing an idea or 
hypothesis, to carrying out experiments in a lab or in the field, to gathering and interpreting 
data, and then making decisions and taking action. 

Automated closed-loop systems remove manual connections between steps in a cycle. 
Autonomous systems are connected by feedback loops and can also be guided by artificial 
intelligence at each step from prediction to experimentation to analysis so that the system 
can iterate and self-optimise without intervention from scientists. 

Scientists will need to work closely with automated closed-loop systems, with a significant 
role in the design, direction and supervision of such systems. There are opportunities to use 
digital augmentation in combination with human insight, intuition and creativity, at each 
step as well as around the whole loop.   

An example is closed-loop molecular or materials discovery which aims to accelerate 
fundamental discovery research as well as innovation in areas from new drugs and therapies 
to energy technologies.5 This will include discovering and making compounds or materials 
that human scientists would never have found. 

The initial steps of developing a hypothesis and designing an experiment are based on 
all relevant existing data about molecular/materials structures, properties and target 
applications along with computational modelling and simulation based on known theories, 
models and previous data. Experiments use intelligent robotic and automated systems to 
make and characterise new molecules and materials, systematically exploring and iteratively 
optimising their properties. The resulting structures and properties are added to the body of 
input data to inform a new hypothesis and sets of experiments. 

General closed-loop systems are a long way off. For example for molecular or materials 
discovery, the optimal combination of in silico screening, automated intelligent 
experimentation and high throughput physical screening will vary depending on the 
question or application. 
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“ ” 

I think there will be examples in the next 10 years where it’s entirely closed loop – automated 

synthesis and measurement guided by computation. It won’t happen across the board, the question is 

whether it will get beyond proof of principle in a university lab and how widely adopted it will be.

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory

“ ” 

We finally have the beginnings of a revolution in materials science. We can use quantum mechanics 

and first-principles simulations to predict novel materials, but we need robotics and automation 

and to use a closed-loop system. Otherwise we won’t fail fast enough to find new battery cathode 

materials for the future.

Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley

“ ” 

 There’s a huge opportunity to reduce the time and cost from hit to lead in drug discovery. Traditionally 

we need to do the design-make-test-analyse cycle many times on promising molecules before we are 

confident enough to proceed. Through AI and automation we are looking at potentially reducing the 

timescales to do this, from months or weeks, to days or hours.

Dr James Weatherall Vice President, Data Science & AI, AstraZeneca
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Computationally guided experimental design
Digital technologies can both support and push scientists to think more broadly about what 
hypotheses to test, as well as how to test them. 
In developing hypotheses and designing experiments, computers can explore high volumes and 
complexity of previous empirical data and uncertainties around it. They can also simultaneously 
consider inputs and outputs from theory and computational modelling as well as constraints 
related to target applications and experimental configurations. Machine learning and automation 
can also enable iteration between hypothesis generation and experimentation.  
It is important for researchers to consider the recommendations of these tools seriously or 
else any efficiency gains or potential new insights will be lost.
As an example, in order to design more potent drug molecules, chemists may start with 
a known molecule and make structural changes that incrementally increase potency. 
A computer may suggest instead to experiment on less effective molecules if their ‘failures’ 
might reveal key insights about the underlying mechanism of action of the drug. 

  “ ”
It can take 4-5 steps to make even a simple molecule, with overall hundreds of ways of completing all 

the steps. For more complex molecules there can be thousands of routes to making the molecule. Tools 

that predict how well each route will work – including predicted yield of each step  – will be a great 

asset to scientists in evaluating which route to pursue.

 Programmes for predicting reactions are getting better, but still based on limited data. They use 

retrosynthesis engines to suggest ways of making molecules and combine with assessment for what 

is most likely to be the optimum way. In ten years’ time, with more complete data including failed 

reactions, they should be really good.

Prof Varinder Aggarwal  Professor of Synthetic Chemistry, University of Bristol

  “ ”
Optimisation is one thing that computers do well. If you can accurately list your constraints, they can tell you 

the possible experiments that will give you the largest amount of information. The question is whether we 

are prepared to list our constraints truthfully, and then honestly follow what the computer says.

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

  “ ”
The experiments you can do are not always the ones you want to do. We often do experiments that 

give you a nice and strong effect, but they are not always the most scientifically instructive. 

Dr Martin Jones Deputy Head of Microscopy Prototyping, The Francis Crick Institute

  “ ”
You don’t need to understand the system to drive optimisation, but a judicious use of digital tools in 

experimental design can lead to better products and better scientific understanding. 

Dr Edward Pyzer-Knapp Research Lead, Machine Learning and Artificial Intelligence, IBM Research UK  
“ ”
 Cognitive algorithms reasoning over a large dataset can suggest hypotheses in a more objective way – 

not necessarily the experiment I might want to do or intuitively do, but the experiment that I should do.

Dr James Weatherall Vice President, Data Science & AI, AstraZeneca
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Harnessing all relevant data and knowledge 
Digital technologies can enable collaboration by making it easier to share information 
among individuals and groups in different locations. Digitalisation can more broadly enable 
scientists, citizens, companies and governments to more effectively identify, share, build on 
and benefit from accumulated data and knowledge. This includes:  
•  Knowledge management systems enhanced by AI engines and visualisation tools 

which highlight the most relevant and valuable information, allowing researchers to 
efficiently navigate and harness existing knowledge and spend less time digesting large 
volumes of information or duplicating effort. Machine learning algorithms combined with 
data mining can also uncover connections that people cannot see. For example, machine 
learning applied to data mined from historical materials science research publications 
recommended new thermoelectric materials several years before their actual discovery.6 
Commercial systems such as IBM Cognitive Discovery can also automate the extraction of 
knowledge from data accumulated inside organisations, and use this to make predictions 
or recommendations.7 

•  Data streaming and real-time data sharing: 5G networks enable real-time data 
sharing between devices and labs as a result of improvements in bandwidth, latency, 
and intelligence. This will potentially enable real-time optimisation of experiments 
or computations based on data or new knowledge being generated now, rather than 
publications that appear several months after data was recorded. 

•  Distributed learning and data brokers: In some situations data cannot be shared, for 
example personal data in fields like healthcare or private data between commercial 
competitors. Distributed learning algorithms take a federated approach, allowing partners 
to learn from each other’s data without direct access to the original information. An 
example is MELLODDY, a project to develop a distributed machine learning platform for 
drug discovery.8 Another way to share private or proprietary data involves third party data 
brokers via which anonymised data is made available to multiple parties. An example is 
Lhasa Limited, which facilitates data sharing in areas like toxicology.9

6  Tshitoyan et al, Nature (2019)  www.nature.com/articles/s41586-019-1335-8

7  IBM Cognitive Discovery www.zurich.ibm.com/cognitivediscovery

8  Machine learning ledger orchestration for drug discovery (MELLODDY) www.imi.europa.eu/projects-results/project-factsheets/melloddy

9   Lhasa Ltd www.lhasalimited.org 
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•  Data standards, formats and interoperability underpin collective use of data. The FAIR 
initiative, a framework for structuring data to be Findable, Accessible, Interoperable and 
Reusable, is being widely applied to data management, and this encourages domain-specific 
standards within wider data discovery best practice. In chemistry, community efforts to 
develop and maintain standards and formats exist in pockets, as well as widely adopted 
commercial standards, for example for molecular information (e.g.SMILES, InChI, MOLfiles) or the 
Crystallographic Information File (CIF) as the de-facto standard for representing crystallography 
data. There are numerous standards and formats related to other aspects of chemistry, as well as 
proprietary standards and formats such as those developed by instrument manufacturers.  

•  Data reduction and storage: In scenarios where there are large data volumes – like 
microscopy or with streamed data – it becomes inefficient and prohibitively costly from 
a financial and computational point of view to put all data on disc. Data reduction tools 
reduce the amount of primary or raw data stored. AI can be used to filter and identify 
relevant data but it is important in data reduction to consider how data might be used not 
only for an immediate research project but for future research also. 

As research becomes more multidisciplinary we need to broaden what we consider to be ‘chemical 
data’, for example making decisions about how to handle real-time sensing data or whether to 
include descriptors capturing environmental footprint in data about a molecule, material or process.  

  “ ”
Many of the problems chemistry will attack are big science problems, like the circular economy, biofuels 

or healthcare. One of the biggest challenges in collaborative projects is managing information – open 

sharing and accessibility is the cheapest way to manage large volumes of information in distributed 

and disconnected teams. Looking back at the Human Genome Project, the BERMUDA declaration of 

open science was crucial as it enabled researchers to work independently but on a core of open data. 

The ‘download and analyse’ paradigm will also have to go away because of data volumes.
Dr Niklas Blomberg Director, ELIXIR

  “ ”
We already use specialised computing infrastructure for cryo-electron microscopy and volume electron 

microscopy, where the instruments produce data faster than it can be written to standard discs. Next 

generation microscopes will be a hundred times faster. There are opportunities to learn from fields like 

particle physics which already have machines producing petabytes of data per second. 
Dr Martin Jones Deputy Head of Microscopy Prototyping, The Francis Crick Institute

  “ ”
 Knowledge management systems augment scientists, enabling them to be more creative and 

giving them time for complex thinking. Researchers don’t need to spend time copying literature, or 

duplicating things that have already been done.
Dr Edward Pyzer-Knapp Research Lead, Machine Learning and Artificial Intelligence, IBM Research UK

  “ ” Our company is 200 years old and has a huge amount of data. I’d like to be able to use this to make 

things more intelligently with less footprint and to understand the implications of our waste.
Dr Elizabeth Rowsell Corporate R&D Director, Johnson Matthey 

  “ ” Some questions are so complicated that a single company cannot solve them, and there is a realisation 

that we need think carefully about how to share information. In a multinational and multi-trust 

environment, we need to take this seriously along the value chain, which means we need mechanisms 

for exchanging information, having measures to tell us if the information is somehow broken.
Dr Horst Weiss Vice President, Knowledge Innovation, BASF SE
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Using a digital toolkit 
in scientific research 

DIGITAL FUTURES: A NEW FRONTIER FOR SCIENCE EXPLORATION AND INVENTION

4
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Natural scientists increasingly use a range of digital techniques, with the specific 
combination of techniques depending on the kind of research they are doing. Examples are: 
• Computational modelling and simulations 
• Automation of physical experiments
• Advanced measurement and sensing
• Imaging and visualisation
• AI and machine learning
• Computer hardware and architectures 

Computational modelling and simulations 
Computational modelling and simulations, increasingly integrating machine learning, are 
powerful tools in making predictions, exploring options to guide thinking and in interpreting 
empirical data. Advances in any underlying theories and/or having larger and more complete 
training datasets are critical for continually improving models. Examples of the use of 
modelling are: 

•  Predicting materials structures and properties: First principles calculations, combined 
with existing experimental data, can provide a starting point for further modelling or 
for experiments. For example, if scientists find a material with particular structure and 
properties, they may look for materials with related structures and similar properties. 
Modelling can provide promising candidates that may be unexpected as well as 
indications of what is unlikely to work, all before lengthy or costly physical experiments 
and screening. 
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•   Environmental modelling: Predictive modelling and simulations are particularly 
important in environmental chemistry and science, as it is often not possible to do the 
equivalent of controlled clinical trials, especially for large-scale impacts.  

•  Simulations: Advances in theory and computational modelling will lead to more 
accurate simulations in the next ten years. The predictive power of simulations increases 
as they get closer to representing the complexity of real-world systems,  meaning 
they can be used to predict the performance of new materials and processes without 
lengthy lab experimentation. An example is seeking to understand the underlying 
electron conductance process in new types of metal-air battery electrodes by comparing 
simulations with experiment.10

  “ ”
For complex multiscale problems it is unlikely we will ever be able to do complete “in silico” 

predictions, but theoretical and computational techniques will be increasingly powerful tools in 

guiding us where to look.

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory 

  “ ” 
There is a huge role for models to improve our preparedness and response on environmental issues. You 

can do a lot of experimentation in the model to better inform policymakers about environmental issues, 

both understanding what we observe now and exploring what-if scenarios based on predictive models.

Prof Jacqueline McGlade Professor of Sustainable Development and Resilience, University College London, 
and Professor of Public Policy and Governance, Strathmore University 

  “ ” 
Our vision at the Materials Project was to democratise the use of first principles calculations – so 

everyone doesn’t need to have a detailed understanding of how to do Density Functional Theory (DFT) 

calculations, but can use the result.
Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley 

  “ ” 
Chemistry has lots of messy, complex, multiscale data. You’re dealing with multiple kinds of 

structures, reactions and measurement techniques, often at the same time. So it’s important to bring 

in as much theory, computational modelling and data-driven approaches as we can to guide us in 

navigating and drawing conclusions from this data.

Prof Sophia Yaliraki Professor of Theoretical Chemistry, Imperial College London

10  See for example the Mat4Bat project http://nano-bio.ehu.es/project/silico-design-efficient-materials-next-generation-batteries-mat4bat
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Automation of physical experiments 
Benefits of partially or fully automating experiments using robots and automated 
instruments include: 

•  Freeing up researcher time: So people can do fewer repetitive tasks and can spend more 
time on complex and creative thinking. 

•  Speed: Increasing throughput and productivity.

•  Accuracy: Automated systems are more precisely controlled. Changes and errors are also 
easier to trace because data is captured automatically in a systematic, standard way. 

•   Reproducibility: Automated experiments are highly repeatable within the same setup. 
Automation facilitates reproduction of experiments by others as experimental and 
analytical protocols can be published and shared, sometimes even directly as executable 
code.

•   Safety: Researchers can be isolated from potentially hazardous substances as parts of an 
experiment are carried out by machines.

Examples of areas where physical automation already exists and is developing to varying 
degrees are: 

Synthesis: Automated systems are already used, especially in industry, for some more 
straightforward steps in solution-based chemistry and synthesis. These include flow 
systems and batch reactors. There are significant challenges in bridging to the next level of 
automation, including automating the connections between different steps in a synthesis, 
automating more difficult steps, and synthesising complex molecules.11  

For inorganic materials there are many different synthesis methods and also challenges 
in solid materials handling. There are opportunities for modular approaches, breaking 
synthesis and characterisation into individual automated steps. There are also examples of 
mobile robotic systems which can carry out and connect different steps. 

Measurement: Techniques like mass spectrometry and gas chromatography are automated 
for routine applications in industry. There are also large elements of automation in 
techniques from fluorescence spectroscopy to NMR to calorimetry. Large scale X-ray 
screening experiments are also being automated, for example the X-Chem partnership 
between the Diamond Light Source and Structural Genomics Consortium covers steps 
including aspects of sample preparation, automatic data collection, and data analysis, 
implemented as a streamlined process, allowing up to 1000 compounds to be screened 
individually in less than a week.12 
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11  Peplow M, Chemical & Engineering News (2019) cen.acs.org/synthesis/Automation-people-Training-new-generation/97/i42

12  XChem: X-ray structure-accelerated, synthesis-aligned fragment medicinal chemistry  www.diamond.ac.uk/Instruments/Mx/Fragment-Screening.html
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 “ ” 
A challenge in chemical synthesis is that it is can be very hard to fully understand the sensitivity of a 

particular reaction to all possible conditions, for example, to moisture or oxygen. Automated systems 

and computers can keep track of and control more variables than a human, systematically exploring the 

full range of the experimental set-up. People may not record every detail when they describe a synthesis, 

meaning there can be issues with reproducibility. Capturing experimental protocols in a systematic way 

will be important for machine learning algorithms and should also help with reproducibility.

  It could be really transformative for chemistry if we could use automation to make really complex 

molecules like anti-microbial and anti-cancer compounds. This is really difficult because these 

structures have more than 10 carbons, multiple heteroatoms, and multiple stereogenic centres. 

It would be especially attractive if such complex molecules could be made by iterative automated 

chemistry, but that is really difficult and beyond the capability of current methods.

Prof Varinder Aggarwal Professor of Synthetic Chemistry, University of Bristol

“ ” 
An awful lot of things in materials research are just not automated yet. The techniques are a bit more 

advanced in organic synthesis. It’s not just about stringing things together – some of the computational 

and automated tools don’t exist at all yet, but they certainly could on a 10-year horizon.

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory

“ ” 
  I think robotics and automation that help us with chemistry are plausible at a certain scale. But it’s not 

robotics for robotics’ sake. One thing doesn’t fit all, and I struggle to see how they can do everything.

Dr Elizabeth Rowsell Corporate R&D Director, Johnson Matthey
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Advanced measurement and sensing
In our Science Horizons project we heard from researchers that modern measurement 
techniques – from different kinds of spectroscopy, spectrometry and microscopy to robust 
miniaturised distributed sensor networks – are giving unprecedented insights about the 
structure, properties and interactions of systems from atoms and molecules through to 
materials and surfaces through to organisms and ecosystems. 

Some examples of how researchers are bringing these techniques together and taking them 
to the next level in terms of capability and application are: 

•  Smart microscopy: Integrating light and electron microscopy by using automation and 
machine learning to analyse a sample using fluorescence microscopy and then guiding an 
electron microscope about where to look.  

•  Multi-modal approaches: Scientists use multiple techniques to study the same system 
or answer a question. An example is advancing our understanding of protein structure and 
function using a combination of X-ray diffraction, cryogenic electron microscopy (cryo-EM) 
and mass spectrometry. 
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•  In-operando measurement: Sensors and measurement instruments that enable 
researchers to study the performance of components or products while in use. These 
insights can be used to monitor safety and to improve future designs. Examples are 
monitoring a battery while in use to see when the electrolyte is about the break down, 
monitoring the interactions of a drug with its target in a cell, using smart or active coatings 
on a medical implant or drug delivery system to get read-outs about its interactions in the 
patient’s body. 

•   Distributed real-time and in-situ sensors: Often combined with AI, networked sensors 
are important for everything from environmental monitoring and large-scale agriculture to 
applications in industrial health and safety such as monitoring gas release or corrosion, or 
knowing when equipment needs to be maintained or replaced. 

“ ” 
We’re seeing huge tech changes for environmental monitoring. We already deploy wearables, 

satellites that use radar pulses to tell you about wind speed, and affordable sensors for volatile 

organic compounds and heavy metals. But we don’t have very good sensors or models yet for 

microplastics.

Prof Jacqueline McGlade Professor of Sustainable Development and Resilience, University College London, 
and Professor of Public Policy and Governance, Strathmore University

“ ” 
 I’d really like to see sensing or diagnostic systems built into products that feed back in real time, e.g. 

seeing a battery in service. Then you can understand crunch points and design your product better. 

All of this is enabled by digital technologies, but we’re not there yet.

Dr Elizabeth Rowsell Corporate R&D Director, Johnson Matthey
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Imaging and visualisation 
Scientists use imaging and visualisation techniques widely, in some cases using a 
combination of automation and statistical methods such as machine learning to accelerate 
complex and time-consuming data analysis and calculations.  

•  Image analysis: Machine learning algorithms can extract relevant data from images with 
high accuracy and throughput. Many researchers have developed algorithms for biological 
imaging, for example to classify images, or identify and track objects.

•  Medical diagnosis: Machine learning can be used to aid healthcare professionals in 
interpreting medical images to support diagnosis and decision-making.13 

•  From big data to relevant data: Machine learning can be used to filter data and decide 
what can be thrown away so that scientists have more data relevant to the question they 
are trying to answer or problem they want to solve.  

•   Visualisation is useful for summarising data and representing it in an accessible way. 
For example, visualisations of predictions of climate models, of observed waste flows, or 
the spread of disease, can be useful tools in a policy context to support development of 
regulation or decision-making.  

 “ ” 
We need analysis tools that can filter down large datasets to highlight what’s useful, for example 

pinpoint specific features in images. Many groups around the world are looking at what machine 

learning can do on this, both for research and for medical diagnostics.

Dr Martin Jones Deputy Head of Microscopy Prototyping, The Francis Crick Institute

4 
 U

si
ng

 a
 d

ig
ita

l t
oo

lk
it 

in
 sc

ie
nt

ifi
c 

re
se

ar
ch

 

13  For a perspective on machine learning in clinical translation see Saria et al, PLOS Medicine (2018) 
blogs.plos.org/speakingofmedicine/2018/11/28/better-medicine-through-machine-learning-whats-real-and-whats-artificial
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“ ” 
  In the next 10 years we will have increasing use of visualisation techniques, both to request what we 

want to do and to understand the outputs at the end. 

Dr Edward Pyzer-Knapp Research Lead, Machine Learning and Artificial Intelligence, IBM Research UK

“ ” 
  Visualisation can be a very powerful tool for interpreting data, but you have to understand what 

exactly you are looking at because once you visualise you’ve already skewed the data, you’re looking at 

a transformation of it. For example you may only be looking at a low-dimensional slice of data about 

a system with many degrees of freedom and you may be looking at a linear, non-linear or geometric 

projection of this data which may lead to different conclusions. 

Prof Sophia Yaliraki Professor of Theoretical Chemistry, Imperial College London

AI and machine learning 
Researchers are using machine learning in many different ways, including in all of the 
previous areas discussed in this section.14 For example:  

•  Combining machine learning with physical automation: Researchers can create an 
automated experimental set-up that intelligently explores a range of parameters as it, for 
example, identifies promising properties or patterns and rules out less promising avenues. 

•  Enhancing imaging and diagnostics: Researchers are using machine learning techniques 
to identify patterns in images for scientific research and for medical applications. This can 
accelerate diagnosis and identify patterns that a person may not see.  

•  Data reduction: Machine learning algorithms are used to filter large volumes of data 
produced from some instruments or through streaming, in order to identify and save 
relevant data.

•   Enhancing measurement and sensing: Machine learning is being used in everything 
from optimising measurement systems to informing decision-making based on data from 
sensors.  

•  Quantum chemistry: Using existing calculations as training data, machine learning 
algorithms can in some cases accurately predict properties such as electronic structure and 
potential energy surfaces faster than first principles quantum mechanical calculations.15

“ ” 
Machine learning and artificial intelligence is good at exploration and to highlight directions for 

innovation, and it’s under-utilised in science in this way. But it still needs a person to interpret and 

take it to the next level.

 You need intelligence to turn data into something relevant and useful. For example machine learning 

methods and toy models can be used to give insights in areas where we have limited theoretical 

understanding or don’t know the initial conditions. Machine learning can vary around the toy model, 

exploring it better even if a human does not fully understand the changes. This way we can get a 

more rigorous model with well-defined failure modes and limits of applicability.

14  For more information and AI and machine learning generally see https://royalsociety.org/topics-policy/projects/machine-learning/

15 For example Smith et al, Chemical Science (2017)  pubs.rsc.org/en/content/articlelanding/2017/SC/C6SC05720A#!divAbstract
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Dr Chris White President, NEC Labs America

Computer hardware and architectures
The continual advances in computer hardware will enable researchers to go faster and to 
handle more complexity in everything from modelling and simulations to robotics, data 
analysis and visualisations. 

It is important for chemical science researchers to engage with digital technology researchers 
and developers at the cutting edge in order to understand emerging innovations and current 
and future technologies that could significantly accelerate and augment their research. 

Examples of evolving computer hardware and architectures that will be important for 
chemical scientists to be aware of are: 

•  Edge computing: Distributed architectures where data is processed near the point of 
collection, including having an AI engine on the sensor. Enabled by smart devices, this 
leads to faster, more reliable responses and uses less energy. Edge computing also has 
benefits for private and sensitive data, for example in healthcare, as data is not transferred 
to a centralised processing point. 

•   Stream computing: Designed for continuous processing of large datasets, stream 
computing analyses high velocity data flows and offers insights in real-time. For 
techniques like microscopy, stream computing may be an approach to overcome the 
transfer, storage and processing challenges associated with high data volumes. 

•  Quantum computing: A computing paradigm that uses quantum superposition and 
entanglement to manipulate information. It can be much faster than classical computers 
for tasks such as search but is only applicable for processes that are described by 
quantum operations. It has clear potential applications in quantum chemistry. 

•  Specialised processors: Optimised for specific task(s), specialised processors can 
greatly improve performance for computationally-demanding processes and can 
become mainstream. For example Graphics Processing Units (GPUs) have enabled the 
development and application of computationally-expensive deep learning algorithms. In 
the future, we may see chemists use custom-made heterogeneous systems that combine 
specialised processors.
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Barriers & enablers  

DIGITAL FUTURES: A NEW FRONTIER FOR SCIENCE EXPLORATION AND INVENTION

5
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Data opportunities and challenges 
The volume of scientific data and the sophistication of techniques to collect and interpret it 
will continue to increase. This encompasses data from individual techniques like cryo-EM, 
phage displays and next generation sequencing as well as from distributed and real-time 
sensing. Multi-modal approaches to research also create larger and more complex datasets 
as scientists draw on multiple types and sources of data relevant to a research challenge. 

Digital technologies create many opportunities to harness data to make new discoveries 
and innovate faster as discussed in Section 3. However there are also significant pitfalls and 
challenges.

Recording and accessing data 
Data provenance and integrity: This is key in drawing conclusions from or making 
decisions informed by data. 

“ ” 
Data provenance and integrity are crucial. Which equipment did the data come from? What was the 

test set-up? How do I verify that my sensing set-up is delivering information I can trust? What was 

the data collected for? Who is maintaining it? What representation of the data is being used? What 

standards are being used? What models are assumed in the representation of the data and what are 

those models based on?

Prof Muffy Calder Professor of Formal Methods, University of Glasgow

Standards and formats are key for data sharing and interoperability. As digital technologies 
and data sharing become more prevalent in R&D, reaching an agreed  understanding about what 
data to record, how to represent it, and how to format it, enables scientists to compare, combine 
and analyse data from different sources in an efficient and reliable way.  

Standards for metadata are essential, for example describing the origin of and assumptions 
about data – especially when integrating data from different sources. Higher level ontologies 
and classifications such as SNOMED that sit above databases used in different groups can 
also facilitate interoperability without requiring that data from different sources is formatted 
in exactly the same way.16 Registration processes or identifiers for data can also facilitate 
combination of different datasets. 

“ ” 
 Algorithms for reaction prediction would be better served if published chemistries could be curated 

and placed in a database. Another issue is that most of the chemistry generated isn’t reported in a 

form that is easily accessible to software.

Prof Varinder Aggarwal Professor of Synthetic Chemistry, University of Bristol

 “ ”
Standards are critical for distributed learning. Can you really come up with sensible results if you’re 

comparing data between hospitals in New York and Paris? They have different healthcare systems 

and may collect information about patients in different ways. 

Dr James Weatherall Vice President, Data Science & AI, AstraZeneca
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16  SNOMED, US National Institutes of Health, National Library of Medicine  www.nlm.nih.gov/healthit/snomedct/index.html 
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Future-proofing beyond a specific research context: To ensure longevity, decisions about 
how to generate, format, store and share data should ideally factor in thinking about how 
data collection techniques might evolve, as well as potential future uses of data beyond 
the immediate research question or current instruments and technologies. An option is to 
consider standards and formats that are extensible so that they can evolve at the same pace 
as the techniques for gathering data. It is also important to consider how data acquired to 
answer a particular scientific question may be valuable for answering other questions also. 

Sharing all data including failures and negative results: Sharing data enables scientists, 
citizens, companies and governments to identify, build on and benefit from accumulated 
data and knowledge. 

Digital tools enable exploration of vastly larger volumes of data and it is important to 
publish all data, rather than one ‘slice’ of it like a graph in a scientific journal article. It is also 
important to track data and analyses that were published and looked promising at one time 
but later were identified as having mistakes or problems. 

Sharing both positive and negative results is particularly important for training machine 
learning systems.

 “ ” 
For machine learning it is really important to record both positive and negative results. Having more 

information about what works and what doesn’t means that the algorithms are much better able to 

judge which pathways to use in retrosynthesis or in the forward direction. 
Prof Varinder Aggarwal Professor of Synthetic Chemistry, University of Bristol

It is also important where possible to share algorithms and code although, as with data, 
there will be constraints and limitations around this. 

Combining data from different places is important as a way of bringing together different 
silos in order to draw higher-level insights, but not if this is simply creating an unstructured 
‘data lake’. For example in the pharmaceutical sector there will be many types and sources of 
data from scientific literature, imaging, pharmacology, toxicology and clinical trials. 
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People have different motivations, limitations and constraints when it comes to data 
sharing and it is important to have a realistic understanding of these in order to create the 
conditions that will be most likely to encourage, enable or compel individuals, companies or 
institutions to collaborate and share.17 Being aware of these factors can also prevent unintended 
consequences, such as reduced participation of corporate researchers in scientific fora if 
associated requirements around sharing data or code are incompatible with company policy. 

Examples of different kinds of constraints and disincentives are: 

•  Commercial competition will constrain the extent to which companies may share data, 
methods or results.

•  Competition between individuals, especially in academia, may make them reluctant to 
share complete datasets, algorithms or code.  

•  Sharing data within and between countries needs to be thought through, especially in the 
case of personal data about individuals or data related to national security.

•  National governments and citizens may have concerns about data that has been generated 
by publicly funded research being shared with and delivering benefit to other countries. 

•  Proprietary formats and software which require maintenance and upgrading may be part 
of the business model for companies that make scientific instruments. 

•  Cost implications of systems to enable data sharing on a long term basis need to be 
considered, and clarity about who will bear these costs.

•  For individual researchers or groups in universities or companies, generating data in 
a format that can be shared inter-operably may be unappealing as it can be tedious, 
especially if done manually. 

There are many possible incentives and enablers for data sharing ranging from making 
it technically easier and less time-consuming, to identifying situations where there is a 
personal or collective benefit.  

Technical enablers 
•  Private and decentralised algorithms in which no one sees each other’s data but can 

interact with it. This allows everyone to benefit, for example by creating better models 
because datasets are bigger, more diverse and less biased. 

•  Using anonymised or encrypted data. 

•  Collectively annotating public datasets, which can inform what annotations to use on private 
datasets, making it easier to import public data in a structured way using machine learning.

•  Repositories for data or code which are easily searchable can save a lot of time. They can give 
researchers access to quality datasets to build on rather than having to generate similar data 
themselves. A PhD student can use code that another student may have spent a sizeable part 
of their PhD developing, reducing duplication and moving the research area forward faster. 

•  Institutional databases, automated data backup, centralised data storage and 
warehousing all enable data sharing.

•  Machine learning to automate aspects of data classification, tagging and formatting to 
support standardisation and sharing. 

•  Data streaming and other solutions discussed in Section 3 on Harnessing all relevant data 
and knowledge.

17  For another perspective see blogs.lse.ac.uk/impactofsocialsciences/2018/11/14/the-main-obstacles-to-better-research-data-
management-and-sharing-are-cultural-but-change-is-in-our-hands 
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Commercial and national interest incentives

•  Pre-competitive or non-competitive situations, for example sharing toxicology data that 
is important across many sectors in a supply chain. Having larger datasets enables all 
companies to ensure employee and customer safety as well as regulatory compliance.  

•  Reproducibility and efficiency: Sharing data both inside and outside companies can lead 
to greater efficiency and reduce duplication.  

•  Consortia like Public-Private Partnerships can consider contributing data as a benefit-in-
kind, which means that sharing internal data is monetised by funding agencies. 

•  Designing local or national scientific initiatives so that they both generate and capture 
value from research data in a particular field, including attracting highly skilled workers 
and inward industrial investment. 

•  Customer demand for standardised inputs and outputs from scientific instruments.

Individual and academic incentives 

•  Defining minimum reporting standards to collectively drive a scientific area forward by 
addressing issues with reproducibility or duplication. 

•  Collective vision from leaders, for example community papers articulating how senior 
researchers propose to approach minimum information standards and community 
conventions, how data ought to be recorded and published in their field.

•  Publisher requirements around deposition of data and code. For example in chemistry 
if published work includes a crystal structure then publishers generally require that it is 
deposited with the Cambridge Crystallographic Data Centre.18  

•  Collective benefit of sharing negative results combined with publisher and institutional 
systems to enable and reward sharing of negative results. 

•  Shifts in academic research culture to incentivise and reward collaboration and 
publication of data.

•  Creation of professionalised career paths for people with knowledge and skills in data 
sharing and knowledge management.

•  Data Champion roles to advocate for data sharing and enable peer-to-peer support. 

18  Cambridge Crystallographic Data Centre www.ccdc.cam.ac.uk  
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 “ ” 
In synthetic chemistry, we need much more data about what works and what doesn’t so we can 

develop better algorithms for the prediction of reaction outcomes. We need to record every reaction, 

both positive and negative. Publishers can play a big role by specifying the type and format of data 

that needs to be made available. Getting academics and journals to change their practices is hard!

Prof Varinder Aggarwal Professor of Synthetic Chemistry, University of Bristol

“ ” 
 You need to have a lot of senior people within a field coming together to think about minimal 

information standards. If you look at biology, there have been a number of community-led 

conventions for how data ought to be recorded on the day of publication. These have been put out as 

community papers, and that is what enables journals or editors to hold people accountable. 

Dr Niklas Blomberg Director, ELIXIR

 “ ” 
It’s always difficult to agree standards or create umbrellas enabling interoperability. Someone has 

to go first, put things forward and people will gravitate towards that. Once you have a standard then 

you can reinforce it, for example by making it a requirement for funding applications or publications, 

or by incentivising SMEs to develop data interoperabiltiy solutions.

Dr James Weatherall Vice President, Data Science & AI, AstraZeneca

“ ” 
 It’s important to manage change in digitalisation. In order to reach agreement on new technologies, 

you need to have an idea of what it means for your business or research area. It’s hard to get people 

“thinking digital”, for example people may not use electronic lab books because it doesn’t reflect the 

way they work, doesn’t offer enough flexibility. It’s a culture change – you need to show researchers 

and the organisation that something comes out of it afterwards, what the net benefits are. 

 The ideal is to have good design of experiment and systematic data so you can draw conclusions 

and reproduce things instead of doing things by careful trial and error. This requires a culture 

change because getting clean data with the right descriptors is not so straightforward. For 

example how do you capture the meaning of “heat up” or “wet” or “pale”, which might be recorded 

in a lab notebook, in a way that can be recorded unambiguously later? People need to see the 

benefits for themselves and for their company of setting things up so as to get all the data in a way 

that is easy to interpret afterwards.  
Dr Horst Weiss Vice President, Knowledge Innovation, BASF SE
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New skills and roles
Skills

It will become increasingly important for researchers across career stages in the chemical 
sciences to develop and update their digital skills. The type and level of knowledge and 
skill will vary from baseline computational, mathematical and statistical competence for 
all chemical scientists to deeper understanding and knowledge for people working in a 
multidisciplinary way to adopt or develop new digital tools for chemical sciences discovery 
and application.  

Concrete examples include broad skills in areas like design of experiment, algorithms and 
coding, use of specialised software and tools for making predictions, setting up an automated 
computational or wet lab experiment, and visualising or drawing inferences from data. 

As datasets get bigger it will be even more essential to use computational and statistical 
techniques. Depending on the individual, this ranges from basic things like recording data 
in searchable formats and using hypothesis testing and linear regression, to established 
techniques in machine learning, to more novel aspects and applications of deep learning or 
Bayesian statistics. 

In current chemical science research there is a spectrum from areas and groups where the 
use of tools like machine learning is lagging behind state-of-the-art algorithm development, 
to multidisciplinary groups that have been working for some time to push new research 
frontiers in chemistry, mathematics, computer science and engineering. 
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While not all chemists need to be involved in developing and ‘commoditising’ new 
digital tools it is important that all have enough knowledge to decide which tools to use, 
understand their strengths and limitations, and to critically evaluate outputs or suggestions 
generated by them. 

Chemists will need to be ‘T-shaped’, with deep knowledge and expertise in chemistry, and 
a broad base of supporting digital skills. This combination will enable chemists to benefit 
from digital technologies in their own research and to ‘speak the language’ of digital experts, 
leading also to more fruitful collaborations in multidisciplinary teams. 

As with multidisciplinarity and interdisciplinarity more broadly, what is important for science 
and for the economy overall is to have a range of people from single domain experts to 
interdisciplinary experts.  

As the chemistry-digital interface develops, it will be crucial to maintain deep expertise in 
core chemistry. Rather than replacing chemistry content in undergraduate degrees with 
large numbers of courses in mathematics, statistics, computer science or coding, it will 
be important to tailor undergraduate course content to include opportunities to develop 
those wider skills in ways that are relevant to chemistry. It will be important to draw on 
perspectives from employers in articulating digital skills requirements and advising on 
curricula.

As data and digital technologies play an increasing role across the wider economy and 
society, chemists who have digital skills will be increasingly in demand to use their expertise 
to benefit other disciplines and sectors.  

“ ” 
Digital technologies cut across many fields, and this is a way to train the workforce of the future. How 

can you get Masters and PhD graduates with skills in this area and make sure they are employable 

by industry? In Sweden, the Wallenberg Foundation is funding the Wallenberg AI programme, getting 

PhD students with the right skillset for Swedish industries.

Dr Niklas Blomberg Director, ELIXIR

“ ” 
 Today you shouldn’t train a chemist who can’t programme. They won’t necessarily do the 

programming but they need to understand it. As datasets become larger you won’t be able to do 

anything without computational or statistical methods. There are basic things like knowing how to 

format data sensibly that people should know as well.

 It is important to prepare people for working in a cross-disciplinary environment in which you may be 

representing your discipline and be the only person with deep disciplinary knowledge in your area. 

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford
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“ ” 
 The power materials scientists of the future will need to use data generated from both 

computations and experiments. We’re going to need people with the data skills to access, 

understand and interpret data themselves. This includes statistics as well as coding and using 

modern web languages. Combining data properly is especially important for machine learning 

because if you use machine learning as a black box, without understanding the original datasets, 

the answers are not well-informed.  

Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley

“ ” 
 Skills and training are very important. We don’t want people who use commodity data science 

toolkits without understanding what assumptions they are making and why they are making them. 

Training in high school is key. You don’t need to go to university to learn how to use Python.

Not all chemists need to become deep experts in AI, modelling or robotics to benefit from the value 

they bring, but everyone does need to understand where these systems have come from and what 

they give back.
Dr Edward Pyzer-Knapp Research Lead, Machine Learning and Artificial Intelligence, IBM Research UK

“ ” 
 It’s more important than ever to develop critical thinking, problem solving, statistical and teamwork 

skills as chemists work on increasingly multidisciplinary problems and need to be aware of the social 

implications and assess the risks of what they do. They need to be able to collaboratively tackle 

problems at a higher level, critically evaluating results and drawing on expertise from multiple fields 

and subfields.

Dr Elizabeth Rowsell Corporate R&D Director, Johnson Matthey

“ ” 
 In Bell Labs we say you never have an electrical engineer solve an electrical engineering problem, 

because then you get the same solution other electrical engineers would create. You want to send 

a chemist to solve an electrical engineering problem to get truly creative and innovative solutions. 

What you need are students with enough depth so they can project the problem in front of them into 

the space of problems they’ve already seen, and then re-project that out in a way that might give an 

innovative and disruptive solution.

Dr Chris White President, NEC Labs America
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Roles, career paths and recognition

In order to harness data and digital technologies to their full potential in life and physical 
sciences research, it will to crucial to attract and retain more people with digital expertise into 
these areas. This includes data scientists, knowledge management experts, roboticists and 
research software engineers whose skills will also be much in demand in the digital tech sector.  
Key factors for funders, universities, research institutes and chemistry-using companies to 
bear in mind are: 
•  Considering the ‘value proposition’ that natural sciences research offers people with 

digital expertise whose skills are in high demand and highly rewarded in other sectors.
•  Creating and supporting long-term, secure technical and research roles with a clear 

framework for career progression. 
•  Viewing these areas as key enabling rather than service roles. People in the roles are at the 

cutting edge and pushing the frontiers of their techniques.
•  Ensuring opportunities for continual professional development, for example training in 

advances in a person’s area of technical expertise and opportunities to evolve or develop 
new techniques as part of their contributions to research.

•  Ensuring that contributions to research and its applications are recognised. 
•  Addressing the fact that, especially for universities and in the context of research funding 

structures, there are many short term roles which results in loss of knowledge and lack of 
continuity.  Related is the fact that development of algorithms, code or software is often 
highly inefficient and sub-optimal when carried our by non-experts as a side project. 

•  Ensuring that there are people with appropriate understanding of knowledge 
management and awareness to ensure compliance with ethical standards. 

 “ ” 
New technologies will never stick and make long-term changes unless we start to professionalise 

some roles. The idea of long-term technical staff has been eroded in universities and the idea that you 

train every chemistry PhD student to be a roboticist or software engineer every four years is totally 

unsustainable. 
Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory

“ ” 
In academia developing, maintaining and upgrading software is often a kind of side activity, and a 

dead end on a research career path because it is not recognised as a contribution to research. Even 

if a piece of software developed by a postdoc or PhD student is used by ten thousand people it’s not 

always citable. I also see a lot of duplication and the issue of ‘abandonware’ because when a person 

writes specialised software and then leaves there’s a lack of continuity and no documentation.

Dr Martin Jones Deputy Head of Microscopy Prototyping, The Francis Crick Institute

“ ” 
  If you buy a new Scanning Tunnel Microscope or any advanced instrument, it’s clear you need skilled 

technicians to operate, maintain and upgrade it. It’s the same for software, and funding models need 

to reflect this. At the Materials Project, we have people who permanently work on the API, analysis and 

recipe-based workflow codes. If you don’t maintain and upgrade software it’s inefficient as you can’t get 

the same level of output long term.

Prof Kristin Persson Professor in Materials Science and Engineering, UC Berkeley
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Multidisciplinary collaborations, 
communities and infrastructure
Collaborations and communities 

New types and levels of collaboration will be needed for everything from developing optimal 
solutions and approaches on specific technical challenges to co-design of major research 
programmes by researchers in the chemical and digital spheres. 

Creating new communities and collaborations takes time as people develop a sufficient 
common language, with an understanding and appreciation of one another’s expertise. It 
is important to have long-term structures and projects to support these communities and 
collaborations.  

Joint challenges and projects that are important and interesting for everyone are key to 
developing interdisciplinary collaboration. This can be at different scales such as: 

•  Collaboration on specific workflows along the pipeline from upstream data acquisition 
through to processing and interpretation. This may bring together developers who care 
deeply about how to make Fast Fourier Transforms work efficiently, wet lab scientists who 
are not at all expert in coding and downstream data management experts. 

•  Joint supervision of PhD students on interdisciplinary research projects.

•  Internships, secondments and consulting to work on projects within and between 
academia, SMEs and large companies.

•  Cross-disciplinary curriculum development projects in universities, for example between 
chemistry, computer science, mathematics and statistics departments.  
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a person or group that is expert in machine learning or robotics and a person or group that 
has a chemistry research question. Ideally this will push both areas forward, creating new 
algorithms or robotic systems and new chemistry insights. 

•  Big high-level challenges that will require multidisciplinary solutions. Researchers 
from across different areas of science and engineering will need to co-design research 
programmes, identifying which approaches are most likely to succeed. This will generate 
novel challenges and insights in multiple arenas as different science and engineering areas 
propel each other forward, with each opening new and potentially transformative research 
directions for the other. 

While ‘interdisciplinarity for interdisciplinarity’s sake’ tends not to work, creating shared 
spaces and fostering new communities is important in enabling collaboration. For example:

•  Networks and events, focussed on a digital technology with applications in multiple areas 
of chemistry, biology, materials science and physics or in companies that compete in 
different areas. An example is the UK AI3SD Network.19 

•  Hack spaces and hack hours which can be hosted in universities or between research 
institutes and local companies. 

•  Online fora. For example in image analysis, open source software like Matlab and ImageJ are 
important. Fora focussed around different software have merged so that if a person wants 
to know how to do a particular operation for an image analysis problem using one tool 
someone who has solved that problem using another tool comes forward. Ten years’ worth 
of questions about both types of software have been merged on one searchable forum. 

•  Shared facilities and resources also naturally bring together user groups and facilitate 
collaboration.

19  Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery www.ai3sd.org
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 “ ” 
For effective multidisciplinary working, you need to both be able to pose a problem and understand 

an answer in the language of other disciplines, while having networks of experts within your own 

discipline to cross-check your thinking. 

Prof Muffy Calder Professor of Formal Methods, University of Glasgow

“ ” 
 Now we really need to combine chemistry, computer science and mathematical knowledge. We need 

a common language – this is really important as there has to be enough understanding to identify 

what’s really important, relevant, possible or useful. 

Prof Andy Cooper Professor of Chemistry, University of Liverpool, and Director of the Materials Innovation Factory

“ ” 
 Ultimately you usually have some horizontal scaling across domains, so you only need domain 

knowledge and the technique or tool is commoditised. However, as for all techniques and 

applications, especially in the early stages you need people working together from both the technique 

and the domain ends. 

 Maximising the potential of digital technologies in physical sciences R&D is going to require 

a fundamental shift in the academic system away from ‘heroing it on your own’ to really 

multidisciplinary teams bringing together experts from many several different disciplines.

Dr Edward Pyzer-Knapp Research Lead, Machine Learning and Artificial Intelligence, IBM Research UK 

“ ” 
  It’s crucial to define problems that require multiple disciplines, so that there is something exciting 

in them and everyone is motivated by them. Having this co-design culture will create a virtuous 

circle where talented people from multiple disciplines are invested in solving big, important 

problems and in turn their chances of success are higher because the problem has been framed as a 

multidisciplinary one from the get-go, identifying the best approaches to apply to that challenge.

Prof Sophia Yaliraki Professor of Theoretical Chemistry, Imperial College London
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New capabilities, functions and physical infrastructures are an important dimensions in 
harnessing data and digital technologies for discovery and innovation in the physical and life 
sciences.  

The best approach depends on the scale of a problem and the number of users. Large 
companies and national labs may bring in and customise existing technologies. They may 
have centralised teams and facilities with expertise in diverse areas, from high performance 
computing, modelling, data analytics and image analysis to machine learning, data mining 
or automation. These functions work with and support multiple business units across the 
company. 

On the other hand, SMEs and smaller university research groups will generally not have the 
critical mass in terms of volume of work to warrant full-time experts or infrastructure in many 
areas. This can lead to inefficiency as a chemistry researcher may need to learn to use many 
different digital tools but use them in a sub-optimal way.   

Shared facilities and centres can enable smaller labs and SMEs to have access to expertise 
or techniques when needed without having an in-house expert on everything. An example 
is the Alan Turing Institute, the UK’s national institute for data science and AI.20 The institute 
consolidates the expertise of people doing cutting-edge machine learning and big data 
research, and is open to collaborations so that other disciplines can benefit also.

Distributed systems that connect and build on existing initiatives can be easier to set up than 
large centralised infrastructure, although this can bring challenges related to interoperability 
and sharing. An example is ELIXIR, an intergovernmental organisation that integrates and 
sustains bioinformatics resources across its member states in Europe.21

There are also different options related to the scale of facilities and types of research 
question. As an example, an automated synthesis facility that optimises reactions on a scale 
of 20-50 experiments may not be worth travel or set-up time for researchers from another 
location. However, for some research questions access to a higher throughput facility 
enabling optimisation over thousands of reactions may be appealing.

20 The Alan Turing Institute  www.turing.ac.uk

21 ELIXIR https://elixir-europe.org/
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Leadership & vision 
Leadership and a long-term strategic vision will be key to ensuring science and society 
benefit from the opportunities at the chemistry-digital frontier. Bottom-up initiatives, 
creativity and communities that develop around exciting scientific areas will also be 
important. 

In order to frame and co-design high-level challenges, experts from different areas will need 
to come together to identify where digital technologies will have the greatest impact, for 
example in accelerating innovation, increasing efficiency or safety, addressing a societal 
challenge or opening new frontiers in discovery.  

Some perspectives to consider in guiding decision-making about how to prioritise or 
structure research and innovation initiatives are dimensions like the following, as well as 
overlaps between them: 

•  Breakthroughs and disruption: What are areas that need urgent disruption and where 
will digital capabilities accelerate breakthroughs? 

•  Complexity: What are areas where conventional techniques simply cannot handle the 
levels of complexity involved?

•  Transdisciplinary problems: What are the challenges that are too big for one lab, 
company or discipline to solve? 

•  Key enabling facilities: What technologies, platforms and capabilities could have a 
transformative impact across multiple science discovery and application areas, and for 
multiple users?  

Examples that straddle one or more of these dimensions are: 

Sustainable energy including next generation batteries to support increasing global 
demand for energy storage due to electrification of transport, portable electronics and 
renewable energy generation from intermittent sources. Also, catalysts to enable water-
splitting and CO2 conversion to produce fuels or materials with low carbon footprint.

New medicines & diagnostics to enable prevention, early detection and treatment of 
everything from bacterial infections, tropical and emerging diseases to cancer, dementia 
and obesity. 

Predicting and reacting to environmental impacts using multiple, distributed, real-time 
sensing systems and models. This will involve inter-related technical choices about the kinds 
of sensors that are needed, how they will be networked, how the data will be used and by 
who, and how the data from them will be represented and interpreted. All of this will need 
to be underpinned by modelling, and framed within wider considerations, such as risk, cost, 
and acceptable levels of uncertainty or thresholds for action.  
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Tackling the ‘plastics problem’ in a realistic, long-term way will involve science and 
technology innovation challenges, including: 

 •  Detailed understanding of how plastics degrade in soil and water, and the impacts of 
the degradation product on living organisms. 

 •  Design of plastics that biodegrade or are recyclable. 

 •  Models for circulation of mirco and macro scale plastics in global ecosystems. 

 •  New sensors, sensor networks, and data analytics.

 •  Life cycle assessments and comparisons of products containing plastics and 
potential alternatives.

This is in addition to business, policy, social and psychology challenges as diverse 
as design and economics of municipal recycling systems, consumer behaviour and 
regulatory frameworks. 

Key enabling platforms combining infrastructure and expertise in areas like automation 
of synthesis or formulation, modelling, data-sharing and advanced data analysis or 
measurement. These can combine centralised and distributed facilities, networked to 
enable transfer of data and samples from one to another. These platforms would underpin 
advances across challenge areas as well as in fundamental discovery across multiple fields 
and sub-fields.  

 “ ” 
One challenge for chemistry is to set up community collaboration and consensus which is required to 

secure large-scale and long-term investment in important research areas.

Dr Niklas Blomberg Director, ELIXIR

“ ” 
It’s important to have a balance between top-down structures and creating communities that draw 

talent into them because they are working on a problem that is interesting and exciting.

Prof Charlotte Deane Professor of Structural Bioinformatics, University of Oxford

“ ” 
Today there are problems too big for one university, company or even country to solve. The direction 

of travel is consolidation, identifying commonalities around big questions or platforms that will 

underpin progress in multiple areas. It’s really important for chemistry to do this and that way you 

create a virtuous circle by attracting and retaining really good people. The message that ‘we can 

solve this problem which is internationally vital and we can collectively do it’ is important.

Prof Jacqueline McGlade Professor of Sustainable Development and Resilience, University College London, 
and Professor of Public Policy and Governance, Strathmore University
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Conclusions & what needs to happen 

DIGITAL FUTURES: A NEW FRONTIER FOR SCIENCE EXPLORATION AND INVENTION
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There are many opportunities to nurture and push forward the interfaces between the 
chemical sciences and digital sciences and technologies in order to deliver impact for 
society. These include opportunities for individuals, for the chemistry community in 
partnership with other communities in the physical, life and digital sciences, as well as for 
research and teaching institutions, companies and funders. 

Lifelong training in digital skills
•  Continued integration of digital skills into the school curriculum and undergraduate 

chemistry courses, e.g. maths, statistics, programming, computer science. 
[Government, curriculum developers, schools, colleges, universities and research institutes]

•  Lifelong training in digital skills for researchers across career stages. 
[Colleges, universities and research institutes, companies, individuals]

•  Identification of future digital skills needs for R&D, and co-creation of teaching and training 
with educators. [Companies, chemistry community, universities and research institutes, 
scientific societies, curriculum developers]

•  Training for researchers on ethical issues in the context of digital technologies. 
[Chemistry community, universities and research institutes, companies, funders]

Roles and career progression for digital experts in research 
outside digital industries
•  Long-term technical and research roles for digital experts in academia, including career 

progression and development opportunities e.g. data scientists, research software and 
robotics engineers. [Universities and research institutes, funders]

•  Mindset and culture change regarding the role of digital professionals in research, 
including recognition e.g. attributions and references in journal articles, new prizes and 
awards. [Chemistry community, universities and research institutes, companies, publishers, 
scientific societies]

Fostering multidisciplinary collaborations and communities
•  Two-way engagement between academia and industry, and between chemistry and 

other disciplines, for knowledge and skills transfer e.g. training and secondments. 
[Funders, universities and research institutes, companies, individuals]

•  Opportunities to foster multidisciplinary exchange and communities e.g. shared spaces, 
networks, fora and events. [Universities and research institutes, funders, scientific societies, 
individuals]

•  Creating communities for digital experts and users within the chemical sciences and 
across its interfaces in the physical and life sciences. [Chemistry community, universities 
and research institutes, scientific societies]
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Supporting and enabling data sharing
•  Proactive sharing of research data, including positive and negative results. 

[Individuals, universities and research institutes, companies, publishers and data service 
providers, funders]

•  Collaborations with digital experts to develop tools and platforms that facilitate data 
sharing, including making it easy for users and understanding IP, privacy and security 
concerns. [Chemistry community, funders, companies, data service providers]

•  Agreed data standards and formats for data. [Chemistry community, scientific societies, 
publishers, companies, data service providers, funders]

•  Culture, incentives and mandates that ensure data sharing is the default insofar as is 
possible. [Chemistry community, scientific societies, companies, funders, governments, 
publishers, universities and research institutes] 

Leadership and advocacy for the digital futures of science R&D 
•  Horizon-scanning and identification of research areas and capabilities where digital 

will have transformative impacts, in partnership with experts from other science and 
technology fields. [Chemistry community, funders, scientific societies]

•  Engagement between digital and chemistry domain experts, and policymakers, to enable 
better use of digital tools for data-informed policy making. [Government and policy makers, 
individual researchers, scientific societies] 

•  Horizon-scanning to identify and prioritise future needs for facilities and resources, 
including business models with access for smaller labs and SMEs. [Chemistry community, 
funders, scientific societies, companies]

•  Ethics framework for responsible use of data and digital technologies in science R&D. 
[Government and policy makers, companies, universities and research institutes, chemistry 
community, scientific societies]

•  Articulate benefits and pitfalls of digital technologies in R&D, facilitating debate to 
respectfully engage with public concerns around the use of digital technologies e.g. ethics, 
privacy, transparency. [Chemistry community, scientific societies, universities and research 
institutes, companies, individuals] 

•  Reach out to inspire the next generation of scientists with examples of digitally-augmented 
and enhanced research. [Chemistry community, scientific societies, universities and 
research institutes, companies, individuals] 

65



@RoySocChem

@wwwRSCorg

@RoyalSocietyofChemistry

@roysocchem

linkedin.com/company/roysocchem

Thomas Graham House

Science Park, Milton Road

Cambridge CB4 0WF, UK

 T +44 (0)1223 420066

Burlington House  

Piccadilly, London

W1J 0BA , UK

T +44 (0)20 7437 8656

International offices

Beijing, China

Shanghai, China

Berlin, Germany

Bangalore, India

Tokyo, Japan

Philadelphia, USA

Washington, USA

www.rsc.org/new-perspectives

Registered charity number: 207890

© Royal Society of Chemistry 2020




