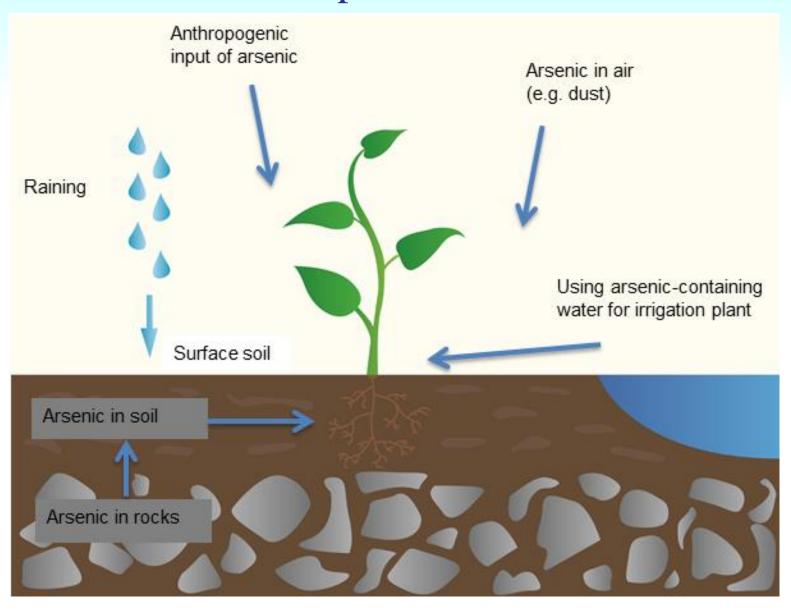

## Arsenic, food and DNA – is there a link?

Steve J Hill, Plymouth University.

- Overview of arsenic in food.
- Brief look at some UK based examples.
- Methodology
- Case study of Dokan, Kurdistan: arsenic speciation in soil, irrigation water and plant tissue.
- DNA studies
- Conclusions.



Arsenobetaine (AsB)


Arsenocholine (AsC)

Arsenosugar

#### Lethal dose $LD_{50}$ values of arsenic species in rat

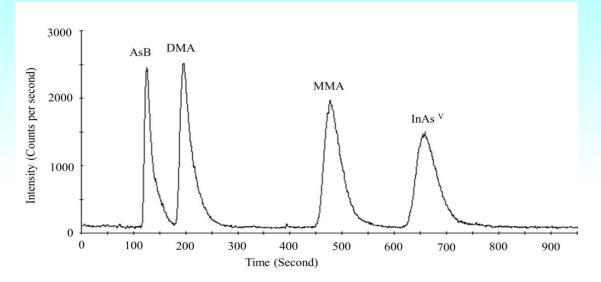
| Arsenic species     | Dose (µg g⁻¹) |  |  |  |  |
|---------------------|---------------|--|--|--|--|
| Arsine              | 3.0           |  |  |  |  |
| InAs <sup>III</sup> | 14.0          |  |  |  |  |
| InAs <sup>v</sup>   | 20.0          |  |  |  |  |
| TMA <sup>+</sup>    | 890           |  |  |  |  |
| MMA                 | 700-1800      |  |  |  |  |
| DMA                 | 700-2600      |  |  |  |  |
| AsB                 | >10,000       |  |  |  |  |
| AsC                 | 6500          |  |  |  |  |

## Potential routes for arsenic into food based plants.

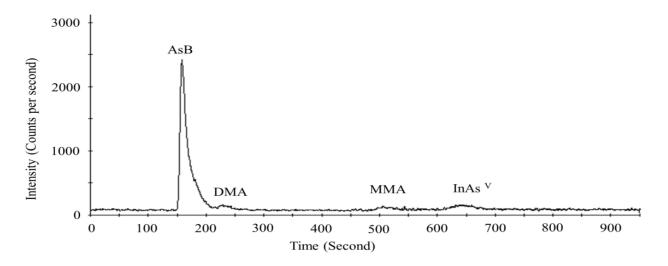


## The concentration (mg/kg) of inorganic and total arsenic in the 20 food groups of the 2006 UK Total Diet Study

| Food group           | Inorganic arsenic<br>mg/kg | Total arsenic<br>mg/kg |
|----------------------|----------------------------|------------------------|
| Bread                | < 0.01                     | < 0.005                |
| Miscellaneous cereal | 0.012                      | 0.018                  |
| Carcase meat         | < 0.01                     | 0.006                  |
| Offal                | < 0.01                     | 0.008                  |
| Meat products        | < 0.01                     | 0.005                  |
| Poultry              | < 0.01                     | 0.022                  |
| Fish                 | 0.015                      | 3.99                   |
| Oils and fats        | < 0.01                     | < 0.005                |
| Eggs                 | < 0.01                     | < 0.003                |
| Sugars and preserves | < 0.01                     | 0.005                  |
| Green vegetable      | < 0.01                     | 0.004                  |
| Potatoes             | < 0.01                     | 0.005                  |
| Other vegetables     | < 0.01                     | 0.005                  |
| Canned vegetables    | < 0.01                     | 0.005                  |
| Fresh fruit          | < 0.01                     | 0.001                  |
| Fruit products       | < 0.01                     | 0.001                  |
| Beverages            | < 0.01                     | 0.003                  |
| Milk                 | < 0.01                     | < 0.001                |
| Dairy produce        | < 0.01                     | < 0.003                |
| Nuts                 | < 0.01                     | 0.007                  |


M. Rose, M. Baxter, N. Brereton and C. Baskaran, *Food Additives & Contaminants: Part A*, 2010, **27**, 1380-1404.

## **ICP-MS** operating conditions for the determination of arsenic in sample digests and extracts.


| ICP-MS                        | X Series 2 (Thermo Scientific) will collision |                 |
|-------------------------------|-----------------------------------------------|-----------------|
|                               | cell                                          |                 |
|                               | Peristaltic pump speed ml min <sup>-1</sup>   | 1.1             |
|                               | Nebulizer type                                | V-groove        |
|                               | Spray chamber                                 | Sturman-Masters |
|                               | Radio frequency power (W)                     | 1350            |
| Gas flows/L min <sup>-1</sup> | Coolant                                       | 13              |
|                               | Auxiliary                                     | 0.75            |
|                               | Nebulizer                                     | 1.0             |
| H <sub>2</sub> addition       | Gas flow (mL. min <sup>-1</sup> )             | 3.6             |
|                               | 7 % H <sub>2</sub> in He                      |                 |
| (m/z)                         | As                                            | 75              |
|                               | In                                            | 115             |
|                               | Ir                                            | 193             |
| Dwell time (ms)               | ICP-MS                                        | 10              |
|                               | HPLC-ICP-MS                                   | 100             |

#### HPLC conditions for 1 % HNO<sub>3</sub> extracts

| Column dimension          | 250 x 4.6 mm                                                                                                                  |  |  |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Guard column<br>dimension | 50 x 4.6 mm                                                                                                                   |  |  |  |  |  |
| Packing material          | Hamilton resin PRP-X100, 10 μm particle size                                                                                  |  |  |  |  |  |
| Eluent flow rate          | 1.1 mL min <sup>-1</sup>                                                                                                      |  |  |  |  |  |
| Sample loop               | 20 μL                                                                                                                         |  |  |  |  |  |
| Mobile phases:            | 20mM Ammonium dihydrogen<br>phosphate (NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub> ) – pH 6.0<br>Sodium sulphate – pH 10.2 |  |  |  |  |  |



Chromatogram of four arsenic standards in aqueous solution. AsB, DMA and MMA and InAs<sup>V</sup> 50  $\mu$ g L<sup>-1</sup> As, employing a Hamilton PRP-X100 anion-exchange HPLC column using sodium sulfate.



Chromatogram of sand sole using anionic-exchange HPLC-ICP-MS, using sodium sulfate

## Certified reference material for total arsenic; all experimental values are given in µg g<sup>-1</sup>, mean ± standard deviation (n=3)

| CRM                   | Sample<br>type | Certified<br>value<br>(Arsenic) | Experiment<br>al value<br>obtained | Extraction<br>efficiency<br>% |
|-----------------------|----------------|---------------------------------|------------------------------------|-------------------------------|
| Loam soil (ERM-CC141) | Soil           | *7.5 ± 1.4                      | *7.33 ±<br>0.42                    | 98                            |
| GBW10015 Spinach      | Plant          | 0.230 ±<br>0.03                 | 0.249 ±<br>0.008                   | 108                           |

\* Aqua regia extractable content

A case study of arsenic speciation in soil, irrigation water and plant tissue.

Location: Dokan, SE of Arbeel in Kurdistan, Iraq.

### Concentrations of total arsenic and arsenic species in soil samples used to cultivated different vegetable and crops, all values are $\mu g g^{-1} \pm SD$ (n=3).

| Soil type | Aqua regia<br>extractable As | InAs <sup>iii</sup> | DMA    | ММА    | InAs <sup>v</sup> | Residue          | Total As in<br>extracts | Extraction<br>efficiency |
|-----------|------------------------------|---------------------|--------|--------|-------------------|------------------|-------------------------|--------------------------|
| So1       | 5.450 ± 0.04                 | 0.756 ± 0.037       | <0.119 | <0.084 | 4.487 ± 0.110     | 0.224 ± 0.007    | 5.23 ± 0.212            | 96                       |
| So2       | 5.32 ± 0.37                  | 0.662 ± 0.048       | <0.119 | <0.084 | 4.474 ± 0.142     | 0.135 ± 0.003    | 5.15 ± 0.146            | 97                       |
| So3       | 5.25 ± 0.26                  | 0.549 ± 0.048       | <0.119 | <0.084 | 4.132 ± 0.277     | 0.696 ± 0.063    | 5.46 ± 0.15             | 104                      |
| So4       | 5.01 ± 0.19                  | 0.718 ± 0.055       | <0.119 | <0.084 | 4.228 ± 0.160     | 0.113 ± 0.003    | 4.98 ± 0.1              | 99                       |
| So5       | 6.21 ± 0.02                  | 0.371 ± 0.039       | <0.119 | <0.084 | 5.414 ±0.161      | 0.320 ± 0.023    | 5.83 ± 0.15             | 94                       |
| So6       | 6.11 ±<br>0.04               | 0.545 ±<br>0.041    | <0.119 | <0.084 | 5.482 ±<br>0.417  | 0.556 ±<br>0.030 | 6.1 ±<br>0.21           | 100                      |
| So7       | 3.92 ± 0.02                  | 0.281 ± 0.014       | <0.119 | <0.084 | 3.573 ± 0.072     | 0.152 ± 0.019    | 3.9 ± 0.09              | 99                       |
| So8       | 5.41 ± 0.18                  | 0.278 ± 0.019       | <0.119 | <0.084 | 4.763 ± 0.124     | 0.372 ± 0.020    | 5.19 ± 0.14             | 96                       |
| So9       | 6.04 ± 0.086                 | 0.344 ± 0.010       | <0.119 | <0.084 | 5.522 ± 0.036     | 0.138 ± 0.027    | 5.9 ± 0.19              | 98                       |
| So10      | 5.32 ± 0.042                 | 0.564 ± 0.0007      | <0.119 | <0.084 | 4.584 ± 0.22      | <0.027           | 5.3 ± 0.3               | 100                      |
| So11      | 6.09 ± 0.08                  | 0.532 ± 0.019       | <0.119 | <0.084 | 5.275 ± 0.120     | 0.405 ± 0.045    | 6.17 ± 0.19             | 101                      |
| So12      | 4.2 ± 0.23                   | 0.509 ± 0.038       | <0.119 | <0.084 | 3.750 ± 0.077     | 0.126 ± 0.003    | 4.36 ± 0.12             | 104                      |
| Loam soil | 7.33 ± 0.42                  | 1.186 ± 0.003       | <0.119 | <0.084 | 5.873 ± 0.003     | 0.112 ± 0.01     | 7.17 ± 0.32             | 98                       |
| BCR 701   | 23.77 ± 1.84                 | 8.45 ± 0.34         | <0.119 | <0.084 | 17.17 ± 0.11      | <0.027           | 26 ± 0.69               | 104                      |

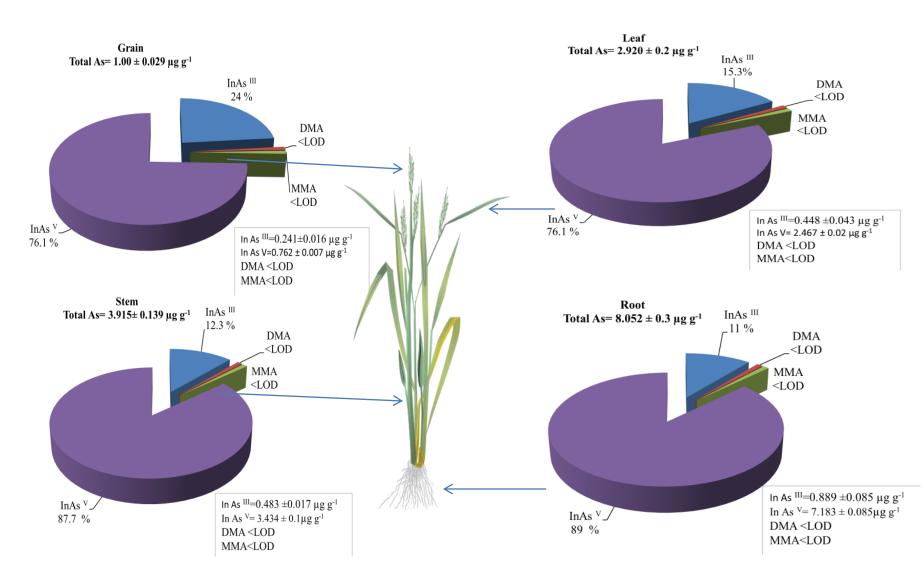
# Concentrations of arsenic in **irrigation water** samples (vegetable crops grown in each region also shown).

| Water<br>sample | Location             | area                | Label | Concentration<br>(µg L <sup>-1</sup> ± SD<br>(n=3) | Vegetable or crop                                                                                                                                         |
|-----------------|----------------------|---------------------|-------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water 1         | South west<br>Arbeel | Turaq               | W1    | 0.54 ± 0.01                                        | Chard-Beta vulgaris subsp., spinach-<br>Spinacia oleracea, radish-Raphanus<br>sativus, Garden cress-Lepidium<br>sativum L and Celery- Apium<br>graveolens |
| Water 2         | South west<br>Arbeel | Turaq               | W2    | 0.664 ± 0.025                                      | Egyptian leek-Allium Kurrat Schweinf                                                                                                                      |
| Water 3         | South Arbeel         | South<br>industrial | W3    | 0.697 ± 0.02                                       | Spring onion-Allium fistulosum                                                                                                                            |
| Water 4         | South Arbeel         | Bahar               | W4    | 0.683 ± 0.06                                       | Wild mint-Mentha longifolia                                                                                                                               |
| Water 5         | South east<br>Arbeel | Pirdawd             | W5    | 2.4 ± 0.12                                         | Beetroot-Beta vulgaris                                                                                                                                    |
| Water 6         | South east<br>Arbeel | Awena               | W6    | 1.152 ± 0.07                                       | Potato-Solanum tuberosum                                                                                                                                  |
| Water 7         | North west<br>Arbeel | Akre                | W7    | 0.576 ± 0.02                                       | Rice-Oryza sativa                                                                                                                                         |
| Water 8         | South east<br>Arbeel | Dokan               | W8    | 1.06 ± 0.07                                        | Broad bean-Vicia Faba                                                                                                                                     |

## Determination of arsenic concentration in different organs of vegetable crops.

| Vegetable        | Microwave<br>assist<br>digestion | InAs <sup>III</sup> | DMA | MMA | InAs <sup>v</sup> | Total arsenic<br>in residue | Total<br>arsenic in<br>extracts | Efficiency<br>of<br>extraction<br>% | Sum of<br>arsenic<br>from<br>species |
|------------------|----------------------------------|---------------------|-----|-----|-------------------|-----------------------------|---------------------------------|-------------------------------------|--------------------------------------|
| Potato           |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Rice             |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Spring<br>onion  |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Radish           |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Chard            |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Egyptian<br>Leek |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Sunflower        |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Mallow           |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Garden<br>cress  |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Wild Mint        |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Board<br>bean    |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Beetroot         |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |
| Arum             |                                  |                     |     |     |                   |                             |                                 |                                     |                                      |

### Arsenic concentration in different organs of vegetable crops – POTATO (dry weight); all values are given in $\mu g g^{-1}$ of arsenic mean ± SD (n=3).


| Vegetable | Microwave<br>assist<br>digestion | InAs <sup>III</sup> | DMA    | ММА    | InAs <sup>v</sup> | Total arsenic in<br>residue | Total arsenic<br>in extracts | Efficiency<br>of<br>extraction<br>% | Sum of<br>arsenic<br>from<br>species |
|-----------|----------------------------------|---------------------|--------|--------|-------------------|-----------------------------|------------------------------|-------------------------------------|--------------------------------------|
| Potato    |                                  |                     |        |        |                   |                             |                              |                                     |                                      |
| Root      | 0.337 ±<br>0.003                 | 0.150 ±<br>0.008    | <0.011 | <0.014 | 0.200 ±<br>0.012  | <0.009                      | 0.355 ±<br>0.015             | 105                                 | 0.350                                |
| Skin      | 0.392 ±<br>0.015                 | 0.048 ±<br>0.001    | <0.011 | <0.014 | 0.287 ±<br>0.004  | 0.027 ±<br>0.001            | 0.373 ±<br>0.029             | 95                                  | 0.362                                |
| Core      | 0.052 ±<br>0.004                 | 0.014 ±<br>0.001    | <0.011 | <0.014 | 0.027 ±<br>0.001  | <0.009                      | 0.045 ±<br>0.005             | 87                                  | 0.041                                |
| Stem      | 0.247 ±<br>0.020                 | 0.082 ±<br>0.005    | <0.011 | <0.014 | 0.132 ±<br>0.010  | <0.009                      | 0.235 ±<br>0.008             | 95                                  | 0.214                                |
| Leaf      | 0.208 ±<br>0.011                 | 0.088 ±<br>0.004    | <0.011 | <0.014 | 0.125<br>± 0.006  | <0.009                      | 0.225 ±<br>0.007             | 108                                 | 0.213                                |

#### Concentration of As in cultivation soil, plant sample (µg As g<sup>-1</sup> dry mass basis), and in irrigation water (µg As L<sup>-1</sup>) mean ± SD (n=3)

| Matrix           | Total As (µg As g <sup>-1</sup> ) |  |  |  |  |
|------------------|-----------------------------------|--|--|--|--|
| Cultivation soil | $5.32\pm0.420$                    |  |  |  |  |
| Broad bean –root | $2.065 \pm 0.032$                 |  |  |  |  |
| Broad bean –stem | $0.212 \pm 0.006$                 |  |  |  |  |
| Broad bean –leaf | $0.489 \pm 0.04$                  |  |  |  |  |
| Broad bean –pod  | $0.258 \pm 0.017$                 |  |  |  |  |
| Broad bean –bean | $0.133 \pm 0.009$                 |  |  |  |  |
| Irrigation water | $1.06\pm0.08~\mu g L^{-1}$        |  |  |  |  |

#### Results of analysis for arsenic speciation in the Broad bean plant (n=3)

| Vegetable: | Microwa    | ve    | As III |       | DMA                                                                                                                                                                                                          |       | MMA    |       | As <sup>v</sup> |          | Total                                                                                    |       | Total                         |       | Efficie | ency  |
|------------|------------|-------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|-----------------|----------|------------------------------------------------------------------------------------------|-------|-------------------------------|-------|---------|-------|
| Broad bean | assist     |       |        |       |                                                                                                                                                                                                              |       |        |       |                 |          | arsenic                                                                                  | in    | arsenic                       | in    | of      | total |
|            | digestion  | 1     | µg g-1 | $\pm$ | µg g⁻¹                                                                                                                                                                                                       | $\pm$ | µg g⁻¹ | $\pm$ | µg g⁻¹ :        | $\pm$ SD | residue                                                                                  |       | extracts                      |       | speci   | es    |
|            | μg g-1± :  | SD    | SD     |       | SD                                                                                                                                                                                                           |       | SD     |       |                 |          | µg g⁻¹                                                                                   | $\pm$ |                               |       | extra   | ction |
|            |            |       |        |       |                                                                                                                                                                                                              |       |        |       |                 |          | SD                                                                                       |       | $\mu$ g g <sup>-1</sup> $\pm$ | SD    | %       |       |
| Root       | 2.065      | $\pm$ | 0.324  | $\pm$ | 0.041                                                                                                                                                                                                        | $\pm$ | 0.068  | $\pm$ | 1.585           | $\pm$    | 0.041                                                                                    | $\pm$ | 2.024                         | $\pm$ | 98      |       |
|            | 0.033      |       | 0.014  |       | 0.007                                                                                                                                                                                                        |       | 0.004  |       | 0.087           |          | 0.001                                                                                    |       | 0.175                         |       |         |       |
| Stem       | 0.212      | $\pm$ | 0.035  | $\pm$ | 0.050                                                                                                                                                                                                        | $\pm$ | 0.044  | $\pm$ | 0.062           | $\pm$    | 0.030                                                                                    | $\pm$ | 0.191                         | $\pm$ | 90      |       |
|            | 0.006      |       | 0.003  |       | 0.004                                                                                                                                                                                                        |       | 0.003  |       | 0.005           |          | 0.001                                                                                    |       | 0.008                         |       |         |       |
| Leaf       | 0.489      | $\pm$ | 0.091  | $\pm$ | <lod< th=""><th></th><th>0.101</th><th><math>\pm</math></th><th>0.232</th><th><math>\pm</math></th><th>0.072</th><th><math>\pm</math></th><th>0.415</th><th><math>\pm</math></th><th>85</th><th></th></lod<> |       | 0.101  | $\pm$ | 0.232           | $\pm$    | 0.072                                                                                    | $\pm$ | 0.415                         | $\pm$ | 85      |       |
|            | 0.04       |       | 0.006  |       |                                                                                                                                                                                                              |       | 0.001  |       | 0.011           |          | 0.005                                                                                    |       | 0.001                         |       |         |       |
| Pod        | 0.258      | $\pm$ | 0.049  | $\pm$ | 0.070                                                                                                                                                                                                        | $\pm$ | 0.027  | $\pm$ | 0.082           | $\pm$    | 0.032                                                                                    | $\pm$ | 0.232                         | $\pm$ | 90      |       |
|            | 0.017      |       | 0.004  |       | 0.006                                                                                                                                                                                                        |       | 0.002  |       | 0.002           |          | 0.001                                                                                    |       | 0.006                         |       |         |       |
| Bean       | 0.133      | $\pm$ | 0.009  | $\pm$ | 0.022                                                                                                                                                                                                        | $\pm$ | 0.055  | $\pm$ | 0.024           | $\pm$    | 0.016                                                                                    | $\pm$ | 0.114                         | $\pm$ | 86      |       |
|            | 0.009      |       | 0.001  |       | 0.003                                                                                                                                                                                                        |       | 0.003  |       | 0.002           |          | 0.001                                                                                    |       | 0.011                         |       |         |       |
| Spinach    | $0.249\pm$ |       | 0.107  | $\pm$ | <lod< th=""><th></th><th>0.034</th><th><math>\pm</math></th><th>0.113</th><th><math>\pm</math></th><th><lod< th=""><th></th><th>0.264</th><th><math>\pm</math></th><th>104</th><th></th></lod<></th></lod<>  |       | 0.034  | $\pm$ | 0.113           | $\pm$    | <lod< th=""><th></th><th>0.264</th><th><math>\pm</math></th><th>104</th><th></th></lod<> |       | 0.264                         | $\pm$ | 104     |       |
| GBW10015   | 0.008      |       | 0.008  |       |                                                                                                                                                                                                              |       | 0.002  |       | 0.011           |          |                                                                                          |       | 0.018                         |       |         |       |
|            |            |       |        |       |                                                                                                                                                                                                              |       |        |       |                 |          |                                                                                          |       |                               |       |         |       |
|            |            |       |        |       |                                                                                                                                                                                                              |       |        |       |                 |          |                                                                                          |       |                               |       |         |       |
|            |            |       |        |       |                                                                                                                                                                                                              |       |        |       |                 |          |                                                                                          |       |                               |       |         |       |



Distribution and concentration of arsenic species in rice plant-Oryza sativa

## Arsenic concentration in different compartments of selected plants

| Group   | Plant species                                                                                                                                                                                                                                                                               | Order of distribution           |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| Group 1 | rice-Oryza sativa, sunflower-Gundelia tournefortii.,<br>Egyptian leek-Allium kurrat. schweinf., chard- Beta<br>vulgaris subsp., radish- Raphanus sativus., potato-<br>Solanum tuberosum, spring onion- Allium fistulosum,<br>celery-Apium graveolens and garden cress-Lepidium<br>sativum L | Root>stem>leaf>grain            |  |  |
| Group 2 | mallow- <i>Malva parviflora</i>                                                                                                                                                                                                                                                             | Leaf>stem>root                  |  |  |
| Group 3 | broad bean- <i>Vicia Faba</i> and wild mint- <i>Mentha</i><br><i>longifolia</i>                                                                                                                                                                                                             | Root>stem <leaf< td=""></leaf<> |  |  |
| Group 4 | beetroot- <i>Beta vulgaris</i> , spinach- <i>Spinacia oleracea</i> and Arum- <i>Arum spp</i>                                                                                                                                                                                                | Root <stem>leaf</stem>          |  |  |

# Cellular level compartmentalisation of arsenic.

- Known that As<sup>V</sup> is a phosphate analog uptake through phosphate transport proteins.
- Also known that As<sup>III</sup> is a silicic acid analogue – uptake through xylem system.

However, few studies on cellular level compartmentalisation of As in vegetative systems.

Plant genomic DNA extraction using CTAB

- A cetytrimethylammonium bromide (CTAB) buffer was prepared.
- Final solution pH adjusted to 5.0
- 0.5g of freeze-dried plant material placed into centrifuge tube with 5ml of CTAB
- Incubated for 15 mins at 55°C then centrifuge to spin down cell debris.
- Add choroform : iso amyl alcohol mixture, mix and centrifuge again.
- Upper aqueous layer contains the DNA.

- Aqueous DNA phase transferred and mixed with ammonium acetate and ethanol.
- Tube inverted to precipitate the DNA.
- Arsenic in this 'crude' DNA extract was measured after dissolution with nitric acid.
- The extract was then washed several times with ethanol prior to final dissolution of the refined extract.

Total arsenic in different compartments of plant (ROOT) compared with total arsenic in the DNA extracts from the different compartments (root, stem and leaf) of plant samples; all values are in  $\mu g g^{-1} \pm SD$ .

| Sample        | Total arsenic in plant  | Without washing      | Washing with 70% ethanol     |
|---------------|-------------------------|----------------------|------------------------------|
| Root          | using microwave         | Total arsenic in DNA | Total arsenic in DNA extract |
|               | assisted acid digestion | extract              |                              |
| Rice          | 8.284 ± 0.539           | $0.199 \pm 0.005$    | $0.188 \pm 0.014$            |
| Spring onion  | 2.072 ± 0.024           | $0.030 \pm 0.002$    | <0.019                       |
| Radish        | 0.672± 0.041            | 0.022 ± 0.003        | <0.019                       |
| Potato        | 0.337 ± 0.003           | 0.036 ± 0.003        | <0.019                       |
| Chard         | 0.578 ± 0.030           | $0.014 \pm 0.003$    | <0.019                       |
| Egyptian leek | 1.860 ± 0.103           | 0.032 ± 0.003        | <0.019                       |
| Sunflower     | 0.504 ± 0.018           | 0.027 ± 0.001        | <0.019                       |
| Mallow        | $0.144 \pm 0.005$       | <0.019               | <0.019                       |
| Wild mint     | 0.868 ± 0.022           | 0.021 ± 0.002        | <0.019                       |
| Broad bean    | 2.065 ± 0.034           | <0.019               | <0.019                       |
| Beetroot      | 0.190 ± 0.015           | <0.019               | <0.019                       |
| Arum          | 0.261 ± 0.012           | $0.027 \pm 0.001$    | <0.019                       |

Total arsenic in different compartments of plant (STEM) compared with total arsenic in the DNA extracts from the different compartments (root, stem and leaf) of plant samples; all values are in  $\mu g g^{-1} \pm SD$ .

| Sample       | Total arsenic in plant  | Without washing  | Washing with 70% ethanol |
|--------------|-------------------------|------------------|--------------------------|
| Stem         | using microwave         | Total arsenic in | Total arsenic in DNA     |
|              | assisted acid digestion | DNA extract      | extract                  |
| Rice         | 4.005 ± 0.264           | 0.09 ± 0.006     | 0.067 ± 0.005            |
| Spring onion | 0.702 ± 0.022           | 0.021 ± 0.003    | <0.019                   |
| Radish       | $0.331 \pm 0.017$       | <0.019           | <0.019                   |
| Potato       | 0.247 ± 0.020           | <0.019           | <0.019                   |
| Chard        | 0.387 ± 0.012           | <0.019           | <0.019                   |
| Sunflower    | $0.262 \pm 0.010$       | <0.019           | <0.019                   |
| Mallow       | $0.276 \pm 0.011$       | <0.019           | <0.019                   |
| Wild mint    | 0.196 ± 0.003           | <0.019           | <0.019                   |
| Broad bean   | $0.212 \pm 0.006$       | <0.019           | <0.019                   |
| Beetroot     | 0.317 ± 0.019           | 0.02 ± 0.002     | <0.019                   |
| Arum         | $0.341 \pm 0.031$       | <0.019           | <0.019                   |

Total arsenic in different compartments of plant (LEAF) compared with total arsenic in the DNA extracts from the different compartments (root, stem and leaf) of plant samples; all values are in μg g<sup>-1</sup> ± SD.

| Sample        | Total arsenic in plant  | Without washing      | Washing with 70% |
|---------------|-------------------------|----------------------|------------------|
| Leaf          | using microwave         | Total arsenic in DNA | ethanol          |
|               | assisted acid digestion | extract              |                  |
|               |                         |                      |                  |
| Rice          | 2.932 ± 0.052           | $0.048 \pm 0.005$    | 0.036 ± 0.001    |
| Spring onion  | $0.594 \pm 0.048$       | 0.026 ±0.001         | <0.019           |
| Radish        | $0.184 \pm 0.011$       | <0.019               | <0.019           |
| Potato        | $0.208 \pm 0.011$       | $0.021 \pm 0.001$    | <0.019           |
| Chard         | $0.183 \pm 0.014$       | $0.025 \pm 0.003$    | <0.019           |
| Egyptian leek | 0.288 ± 0.009           | $0.026 \pm 0.002$    | <0.019           |
| Sunflower     | $0.086 \pm 0.003$       | <0.019               | <0.019           |
| Mallow        | $0.542 \pm 0.011$       | <0.019               | <0.019           |
| Wild mint     | $0.382 \pm 0.012$       | <0.019               | <0.019           |
| Broad bean    | $0.489 \pm 0.040$       | 0.042 ± 0.002        | <0.019           |
| Beetroot      | $0.218 \pm 0.021$       | $0.026 \pm 0.001$    | <0.019           |
| Arum          | $0.185 \pm 0.017$       | 0.034 ± 0.003        | <0.019           |

## Conclusions:

- The distribution of total and arsenic species in plant material depends on the individual plant species.
- Arsenic concentration in different compartments of plants in this limited study fell into four groups.
- Preliminary studies show that the DNA extracts of rice (including root, stem and leaf) contained arsenic above the LOD (0.019 µg g<sup>-1</sup>) of the initial methodology.

 We believe that arsenate can replace phosphate, more specifically the phosphate linkages of the DNA fraction, especially when the plant contains a high inorganic arsenic concentration.

 It was also found that the concentration of arsenic as arsenate 'associated' with DNA in rice plant decreased with decreasing arsenic concentration from the root to the leaf of the same plant.  Finally, in very recent work, taking the washed DNA and dissolving in TRIS EDTA buffer prior to speciation by ion chromatography ICP-MS, we found that although some As<sup>v</sup> was released, the roots stem and leaf compartments all retained a very similar proportion of the As<sup>v</sup> (41±1 %) implying that this fraction may be 'incorporated' into the DNA.

### Acknowledgements

I would like to acknowledge the contribution of Bashdar Sadee and Michael Foulkes to the work presented today.

## Thank you for listening.