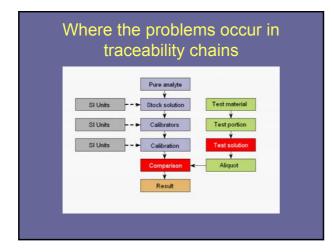
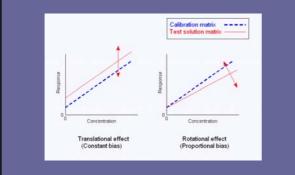
Matrix Effects and Uncertainty

Michael Thompson Birkbeck College (University of London) m.thompson@bbk.ac.uk


A framework for further study

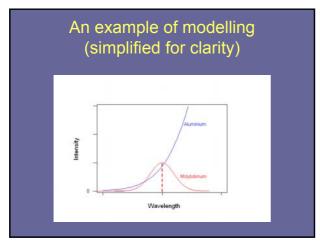
A review of interference effects and their correction in chemical analysis, with special reference to uncertainty


M Thompson and S L R Ellison (2005) Accred Qual Assur **10**: 82-97

The two analytical problems

- *Matrix effect*—loss or gain of analytical signal.
- Recovery effect—loss (or gain!) of analyte.

Matrix effects--definitions


Methods of reducing matrix effects

- 1. Matrix is effectively constant among test materials of the defined class. -Matrix matching
- 2. Matrix varies to a consequential degree between test materials of the defined class.
 -Matrix modification
 -Modelling
 -Internal calibration

Uncertainty estimation after matrix correction

- **Systematic methods** Derive the uncertainty estimate directly from the calibration model.
- *Random variations* Treat the matrix variation as a random variable.
- *Worst case scenarios* Study an example with extreme deviation of the matrix from the calibrators.

Calibration and uncertainty models

• $(S) = (Mo) + k^*(Al)$

where (*Mo*), (*A*I) are the concentrations of molybdenum and aluminium, k is a calibration factor and (*S*) is the total signal.

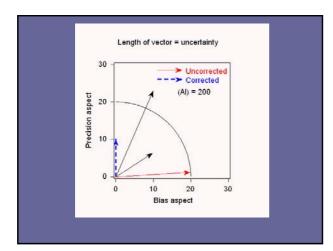
• (Mo) = (S) - k(Al)

 $u^{2}(Mo) = u^{2}(S) + k^{2} * u^{2}(AI)$

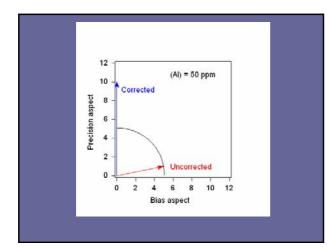
(assuming that *k* is invariate).

Uncertainty terms


- $u^2(S) = v^2(Mo) + w^2(Mo)^*(S)^2$
- $U^{2}(AI) = v^{2}(AI) + w^{2}(AI)^{*}(AI)^{2}$


where v(.) is a constant uncertainty related to the detection limit and w(.) provides an uncertainty proportional to the concentration.

Effect of correction on uncertainty


True molybdenum concentration (Mo) = 5 ppm

(AI)	Uncorrected signal (ppm Mo)	Uncertainty of uncorrected signal (ppm)	Uncertainty of corrected concentration (ppm)
0	5.0	1.0	10.1
50	10.0	1.1	10.1
200	25.0	1.3	10.1

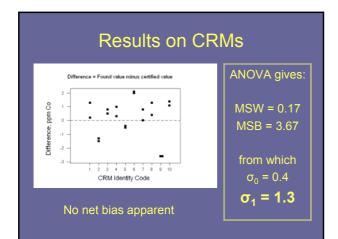
Modelling--summary

- Correction for bias by modelling often increases the precision contribution to uncertainty but (hopefully!) decreases the combined uncertainty.
- In most instances, unnecessary bias correction will *increase* uncertainty.

Random studies

Random studies


This method is appropriate where the causes of the matrix effects are obscure or too complex to model.


- Take a number of representative test materials.
- Measure the apparent concentrations of the analyte (in duplicate).
- Calculate the differences (found minus expected).
- Calculate the between matrix standard deviation by analysis of variance.

Analytical "health-warnings"

- Reference materials (i.e., with known true values) are best for this application, but the uncertainties on the reference values are often uncomfortably high.
- If reference materials are not available, a spike recovery procedure can be adopted.
- Uncertainties estimated by this procedure will include contributions from recovery variations.
- Unless the concentration range is small, allowance for heteroscedasticty must be made.

Example: 10 Geological CRMs: Analyte is Co							
ID Code	Certified value	Result 1	Result 2	Difference 1	Difference 2		
	10,2	11,5	10,4	1,3	0,2		
2	12,9	11,4	11,6	-1,5	-1,3		
3	9,8	10,3	10,6	0,5	0,8		
	6,7	7,7	7	1	0,3		
5	7,5	7	7,1	-0,5	-0,4		
	6,4	8,5	8,4	2,1	2		
7	11,1	11,1	11,9	0	0,8		
	10,1	11,4	10,5	1,3	0,4		
9	7,2	4,6	4,6	-2,6	-2,6		
10	11,4	12,8	12,5	1,4	1,1		

"Worst Case" Scenario

"Worst Case" Scenario

- 1. Select a material likely to produce an extreme matrix effect, and estimate its effect.
- 2. This effect can be regarded as the extreme of a range width 2.4. The associated standard uncertainty is A.3.
- 3. This is a crude expedient, but it is sometimes has the useful outcome of eliminating a suspected matrix effect from further consideration.

More Health Warnings

- **Uncertainty is very variable** it has large relative uncertainty when estimated from few (>20) results. It is seldom useful to report an uncertainty to better than one significant figure.
- Uncertainty is heteroscedastic you may need to take this into account if the expected concentration range is large. This would require a <u>large</u> experiment.

and finally....

- Matrix effects come in two main forms translational and rotational, and mixtures of the two. Failure to distinguish between them may give rise to misleading results.
- Many methods of treating rotational effects (*e.g.*, standard additions) rely for their effectiveness on the prior treatment of translational effects (*e.g.*, by background correction).