UCL

The validation of qualitative test methods

Tom Fearn

Department of Statistical Science, UCL

UCL

Types of result

- Qualitative
 - Binary (0/1) = absent/present, fail/pass
 - Ordinal, eg low, moderate, high
- Semi-quantitative - <1, 1-10, >1, ...
- Quantitative
 - Measure of concentration on a continuous scale

[≜]UCL

Issues for validating qualitative tests

- The is very little information in one binary result
- Different statistical methods are needed for dealing with such data
- Study design
 - Types and numbers of samples?
- Reporting
 - What to report and how to analyse?

[±]UCL

Types and numbers of responses

Actual	Observed		
	Negative	Positive	
Negative	TN	FP	Ntot
Positive	FN	TP	Ptot

Reliability measures

False positive rate = FP/Ntot Specificity = TN/Ntot = 1 – False positive rate

False negative rate = FN/Ptot Sensitivity = TP/Ptot = 1 – False negative rate

[±]UCL

Reliability measures – some comments

The overall 'accuracy' on any population of samples

accuracy = $p \times \text{sensitivity} + (1 - p) \times \text{specificity}$

depends on the proportion p of actual positives in the population. Need to know both specificity and sensitivity in order to generalise.

[≜]UCL

Reliability measures - some comments

- Both sensitivity and specificity may depend on sample type and the presence of interferents
- Sensitivity will usually depend on the amount of analyte present in the sample. This has implications for
 - study design
 - interpreting 'average' sensitivity from a study

UCL

Study design – choice of samples

- Aim to provide estimates of specificity, and sensitivity at a range of analyte concentrations
 - Desirable to include a blank sample
 - Concentration should be known for positives
 - Do not just use 'easy' samples
 - Use ongoing studies to build up a picture of the sensitivity curve

UCL

Study design – numbers of replicates

- Need substantial numbers of replicates to establish a sensitivity with and degree of precision
- For example, the 95% confidence limits for a true proportion when we observe 4 successes out of 5 are (0.41, 0.98), for 16 out of 20 they become (0.60, 0.93).

UCL

Reporting

- Report numbers of positive and negative results for each sample
- If relevant report the concentration for each positive sample
- Fine to invent scoring rules tailor to the specific context

[≜]UCL

Conclusions

- The validation of qualitative test methods needs special approaches
- These need not be complicated in fact the simpler the better
- A reference S.L.R. Ellison and T. Fearn, Trends in Analytical Chemistry, 24, 468-476, 2005.