
Real-Time Tracking of Entangled Pathways in the Photodissociation of Acetaldehyde

Photodissociation of acetaldehyde occurs via different pathways, including the "roaming" mechanism

However, the details of these mechanisms are not always clear

Can we study the different reaction pathways by tracking the time evolution of product distributions?

Joint experimental and theoretical

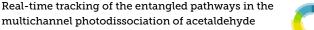
study of the reaction

Theoretical analysis (SA3-CASSCF)

A two-dimensional view: product distribution

Isomerisation of energised molecules prior to dissociation might well be the rule rather than the exception in many polyatomic unimolecular processes

-			~
Sc	ier	าก	ρ
\sim		\sim	<u> </u>


V . F	iemical	
\mathbf{i}		

Liu	et al.	(2020

) Ol·	10 10 39	/DOSCO0063A

el	photo	diss	ociation	of	acetal	deł

odice	nciation	of aceta	aldohu

