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Following slides are not a highly formalised proof, but 
show schematically how dimensions and angles are 
derived (indicated in blue) based on initial data (white).
Calculations are made simpler by there being a number of 
right-angled triangles with angles 30º, 60º and 90º, noting 
that sin 30º = ½ and sin 60º = ½√3.
Pythagoras’ Theorem is used extensively in this three-
dimensional geometry problem.
Methods of solution provided in the competition vary in 
style, but those capturing the fundamentals and final 
answers shown here have been deemed to be correct.



Part I – proof of symmetry and 
angle between BD and A1C
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Triangle AA1C is coming out 
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Triangles ADE and ABE are both right-
angled with common side AE and 

hypotenuse of equal length 2. Therefore,  
BE = DE and there must be symmetry about 

the plane of AA1C, so that BD┴A1C



Part II – angle between planes
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Triangle A1C1E has sides A1E = 2, 
C1E = 2√3 and A1C1 = 4, which 

satisfies the Pythagoras condition, 
making angle A1EC1 a right angle.



Part III – angle between lines
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Triangle BC1F is coming out 
of the plane of the paper
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