RSC 'Chinese Puzzle’ competition - solution

April 2007

- Following slides are not a highly formalised proof, but show schematically how dimensions and angles are derived (indicated in blue) based on initial data (white).
- Calculations are made simpler by there being a number of right-angled triangles with angles $30^{\circ}, 60^{\circ}$ and 90°, noting that $\sin 30^{\circ}=1 / 2$ and $\sin 60^{\circ}=1 / 2 \sqrt{3}$.
- Pythagoras' Theorem is used extensively in this threedimensional geometry problem.
- Methods of solution provided in the competition vary in style, but those capturing the fundamentals and final answers shown here have been deemed to be correct.

Part I - proof of symmetry and angle between $B D$ and $A_{1} C$

Triangle $\mathrm{AA}_{1} \mathrm{C}$ is coming out of the plane of the paper

Triangles ADE and ABE are both rightangled with common side AE and hypotenuse of equal length 2. Therefore,
$B E=D E$ and there must be symmetry about the plane of $A A_{1} C$, so that $B D \perp A_{1} C$

Part II - angle between planes

Triangles $\mathrm{A}_{1} \mathrm{BD}$ and $\mathrm{BC}_{1} \mathrm{D}$ are coming out of the plane of the paper

Triangle $A_{1} C_{1} E$ has sides $A_{1} E=2$, $\mathrm{C}_{1} \mathrm{E}=2 \sqrt{3}$ and $\mathrm{A}_{1} \mathrm{C}_{1}=4$, which satisfies the Pythagoras condition, making angle $A_{1} E C_{1}$ a right angle.

Part III - angle between lines

Triangle $\mathrm{BC}_{1} \mathrm{~F}$ is coming out of the plane of the paper

