Monographs for Teachers

These popular publications present concise and authoritative accounts of selected but well-defined topics in chemistry for the guidance of teachers and students for further and higher education. All titles are paperbound unless otherwise stated.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Pages</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Principles of Oxidation and Reduction</td>
<td>40pp</td>
<td>0 85404 026 9 : 4 00</td>
</tr>
<tr>
<td>8</td>
<td>Principals of Atomic Orbitals</td>
<td>51pp</td>
<td>0 85404 028 5 : 3 00</td>
</tr>
<tr>
<td>9</td>
<td>Principles of Reaction Kinetics (Revised 2nd Edition in SI Units)</td>
<td>60pp</td>
<td>0 85404 024 2 : 8 00</td>
</tr>
<tr>
<td>13</td>
<td>Principles of Osmotic Phenomena (2nd Edition)</td>
<td>74pp</td>
<td>0 85404 025 0 : 3 50</td>
</tr>
<tr>
<td>15</td>
<td>Physicochemical Quantities and Units (2nd Edition)</td>
<td>128pp</td>
<td>0 85404 009 9 : 1 5 00</td>
</tr>
<tr>
<td>16</td>
<td>Chemical Processing in Industry</td>
<td>34pp</td>
<td>0 85404 007 7 : 2 3 50</td>
</tr>
<tr>
<td>17</td>
<td>An Introduction to Biochemistry</td>
<td>116pp</td>
<td>0 85404 016 1 : 4 50 (Hardcover edition : 9 00)</td>
</tr>
<tr>
<td>18</td>
<td>Principles of Crystal Chemistry</td>
<td>72pp</td>
<td>0 85404 017 X : 4 00 (Hardcover edition : 8 00)</td>
</tr>
<tr>
<td>19</td>
<td>The Molecular Basis of Entropy and Chemical Equilibrium</td>
<td>72pp</td>
<td>0 85404 020 X : 3 50 (Hardcover edition : 7 00)</td>
</tr>
<tr>
<td>21</td>
<td>Modern Analytical Methods</td>
<td>234pp</td>
<td>0 85186 759 6 : 1 2 50</td>
</tr>
<tr>
<td>22</td>
<td>Principles of Photochemistry</td>
<td>70pp</td>
<td>0 85186 769 3 : 4 50</td>
</tr>
<tr>
<td>23</td>
<td>Chemical Aspects of Atomic Nucleus</td>
<td>115pp</td>
<td>0 85186 779 0 : 4 50</td>
</tr>
<tr>
<td>24</td>
<td>Principles of Free Radical Chemistry</td>
<td>83pp</td>
<td>0 85186 829 0 : 4 50</td>
</tr>
<tr>
<td>25</td>
<td>Some Aspects of Technological Economics</td>
<td>103pp</td>
<td>0 85186 909 2 : 4 50</td>
</tr>
<tr>
<td>26</td>
<td>The Hydrogen Bond</td>
<td>40pp</td>
<td>0 85186 991 X : 4 50</td>
</tr>
<tr>
<td>28</td>
<td>Some Aspects of Basic Polymer Science</td>
<td>64pp</td>
<td>0 85186 939 4 : 4 50</td>
</tr>
<tr>
<td>29</td>
<td>Ion-Exchange: Introduction to Theory and Practice</td>
<td>91pp</td>
<td>0 85186 969 6 : 5 00</td>
</tr>
<tr>
<td>30</td>
<td>Molecular Structure: Its Study by Crystal Diffraction</td>
<td>57pp</td>
<td>0 85186 689 1 : 4 00</td>
</tr>
<tr>
<td>31</td>
<td>The Principles of Bioinorganic Chemistry</td>
<td>114pp</td>
<td>0 85186 697 4 : 1 5 00</td>
</tr>
<tr>
<td>32</td>
<td>An Introduction to Enzyme Chemistry</td>
<td>88pp</td>
<td>0 85186 999 2 : 4 50</td>
</tr>
<tr>
<td>33</td>
<td>Inorganic Reaction Mechanisms</td>
<td>112pp</td>
<td>0 85186 128 8 : 4 00</td>
</tr>
</tbody>
</table>

Further information on the above titles can be obtained from: The Marketing Department, The Royal Society of Chemistry, Burlington House, London WIV 0BN. Orders should be sent to: The Royal Society of Chemistry, Distribution Centre, Blackhorse Road, Letchworth, Herts., SG6 1HN.
CHEMISTRY CASSETTES

General Editor:
Peter Groves
The University of Aston in Birmingham

© Peter Sykes 1981

ISBN O 85186 378 7

All Chemistry Cassette materials are copyright and the tape recording and book may not be copied or reproduced in any way without the written permission of the Educational Techniques Subject Group. The materials are sold on the express condition that they are to be used for educational purposes only. They may not be used for commercial gain or be hired out for this or any other purpose without the prior written permission of the Educational Techniques Subject Group.

The views expressed in the recording and the book are those of the author and not necessarily those of the Royal Society of Chemistry.

Produced by Tetradon Publications Ltd., Warley, West Midlands.

Printed in the University of Aston in Birmingham

Please read this carefully before you start.

USING THE CHEMISTRY CASSETTE

This Chemistry Cassette learning programme has two components - an audiostream and this book. The two are designed to be used together so always have the book with you as you work through the cassette.

As you listen you will, from time to time, be asked to switch off your tape player and answer some questions. You should, therefore, have pen and paper ready before you start.

The material in the book consists of reaction schemes, figures and equations, each of which is clearly numbered. Dr Sykes will refer you to the appropriate number whenever he wishes you to locate a particular scheme and to study its contents. Because some of the questions asked are answered in subsequent schemes you should use a piece of paper or card to cover any schemes beyond the one that is being currently referred to.

In addition to the schemes in the book a separate pull-out sheet with schemes 10 and 13 on it is also provided. You will be referred back to these on several occasions.

This programme has been designed for individual, self-paced learning and you can work through it at a rate related to your own needs and understanding. Switch off the tape player whenever you want to think, to write some notes or to answer a question. Use the rewind control to revise or to repeat material that you might not fully understand on a first hearing. Whenever appropriate make notes to supplement the material contained in the book; this will enable you to build up a detailed set of personal notes which will serve as your own authoritative guide to the subject.
Linear Free Energy Relationships

\[\text{CH}_3\text{CH}_2\text{Br} > \text{MeCH}_2\text{CH}_2\text{Br} > \text{Me}_2\text{CHCH}_3\text{Br} >> \text{Me}_3\text{CCH}_2\text{Br} \]

nucleophilic displacement by \(\text{EtO}^- \)

\[\begin{align*}
\text{OMe} & > \circ & \text{NO}_2 \\
\end{align*} \]
electrophilic "displacement" by \(\text{NO}_2^- \) (nitration)

1. RELATIVE REACTIVITY SERIES

\[\begin{align*}
1 & \quad \text{RCO}_2\text{Me} + \text{NMe}_3 \underset{k}{\overset{\theta}{\rightarrow}} \text{RCO}_2^- + \theta \text{NMe}_4 \\
2 & \quad \text{RCO}_2\text{H} + \text{H}_2\text{O} \underset{k}{\overset{\theta}{\rightarrow}} \text{RCO}_2^- + \text{H}_2\text{O}^+ \\
\end{align*} \]

2. FIRST MAJOR STRUCTURE/REACTIVITY CORRELATION

3. STRAIGHT LINE PLOT: \(-\log K_{\text{RCO}_2\text{H}}\) vs. \(-\log K_{\text{RCO}_2\text{Me}}\)

ACKNOWLEDGEMENTS

The plots in schemes 3, 5, 7, 21, 25, 32 and 43 are reprinted, from the source listed under the scheme concerned, with the kind permission of the American Chemical Society, copyright holder of the last four. The plot in scheme 38 is reprinted with the kind permission of Professor J A Leisten and the Royal Society of Chemistry.
\[\Delta G^0 = -2.303RT \log K \]
equilibrium constant

\[\Delta G^\ddagger = -2.303RT \log [\frac{h}{kT}] \]
rate constant

4 RELATIONSHIP BETWEEN \(k \), \(\kappa \) AND \(\Delta G \)

5 PLOT OF DISSOCIATION OF \(RCO_2H \) v HYDROLYSIS OF \(RCO_2Et \)

6 STERIC EFFECTS IN \(RCO_2H \) DISSOCIATION v \(RCO_2Et \) HYDROLYSIS

7 ACID DISSOCIATION v ESTER HYDROLYSIS: \(m- \) AND \(p- \) SUBSTITUTED BENZOATES
Applying this general equation to the straight line in SCHEME 7:

$$\log k_X = \rho \log K_X + c$$...[1]

where ρ is the slope of the line, c the intercept, and X is a designated m- or p-substituent in the benzene ring of the species concerned. It is also possible to write an exactly analogous equation restricted to the pair of unsubstituted compounds, i.e. where $X = H$:

$$\log k_H = \rho \log K_H + c$$...[2]

Then subtracting ...[2] from ...[1]:

$$\log k_X - \log k_H = \rho (\log K_X - \log K_H)$$...[3]

which may also be written in the form:

$$\log \frac{k_X}{k_H} = \rho \log \frac{K_X}{K_H}$$...[4]

DERIVATION OF HAMMETT RELATION: 1

By definition: $\log \frac{K_X}{K_H} = \sigma_X$ (substituent constant) ...[5]

i.e. $\log \frac{K_{p-NO_2}}{K_H} = \sigma_{p-NO_2}$, $\log \frac{K_{m-Me}}{K_H} = \sigma_{m-Me}$

...[4] from SCHEME 8 can thus be transformed into:

$$\log \frac{k_X}{k_H} = \rho \sigma_X$$...[6]

This is the most common representation of the Hammett relation.

DERIVATION OF HAMMETT RELATION: 2

<table>
<thead>
<tr>
<th>Substituent, X</th>
<th>σ_{p-X}</th>
<th>σ_{m-X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me, C</td>
<td>-0.10</td>
<td>-0.20</td>
</tr>
<tr>
<td>Me</td>
<td>-0.07</td>
<td>-0.17</td>
</tr>
<tr>
<td>H</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MeO</td>
<td>+0.12</td>
<td>-0.27</td>
</tr>
<tr>
<td>HO</td>
<td>+0.12</td>
<td>-0.37</td>
</tr>
<tr>
<td>F</td>
<td>+0.34</td>
<td>+0.06</td>
</tr>
<tr>
<td>Cl</td>
<td>+0.37</td>
<td>+0.23</td>
</tr>
<tr>
<td>MeCO</td>
<td>+0.38</td>
<td>+0.50</td>
</tr>
<tr>
<td>Br</td>
<td>+0.39</td>
<td>+0.23</td>
</tr>
<tr>
<td>CN</td>
<td>+0.56</td>
<td>+0.66</td>
</tr>
<tr>
<td>NO_2</td>
<td>+0.71</td>
<td>+0.78</td>
</tr>
</tbody>
</table>

SOME SUBSTITUENT CONSTANT, σ_X, VALUES

BASE-CATALYSED HYDROLYSIS OF 2-ARYLETHANOATES

![Diagram showing base-catalysed hydrolysis of 2-arylethanoates](image)

\[p = 0.82 \text{ (slope of straight line)} \]

PLOT OF $\log \frac{k_X}{k_H}$ v. σ_X FOR 2-ARYLETHANOATE HYDROLYSIS
Reaction

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Type</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\text{ArNH}_2) with (2,4-(\text{NO}_2)_2)C_6H_5Cl in EtOH (25°)</td>
<td>(k)</td>
<td>-3.19</td>
</tr>
<tr>
<td>2. (\text{ArNH}_2) with (\text{C}_6\text{H}_5\text{COCl}) in (\text{C}_6\text{H}_6) (25°)</td>
<td>(k)</td>
<td>-2.69</td>
</tr>
<tr>
<td>3. (\text{ArCH}_2\text{Cl}) solvolysis in aq. (\text{Me}_2\text{CO}) (69.8°)</td>
<td>(k)</td>
<td>-1.88</td>
</tr>
<tr>
<td>4. (\text{ArO}^\ominus) with EtI in EtOH (25°)</td>
<td>(k)</td>
<td>-0.99</td>
</tr>
<tr>
<td>5. (\text{ArCO}_2\text{H}) with MeOH (acid-catalysed, 25°)</td>
<td>(k)</td>
<td>-0.09</td>
</tr>
<tr>
<td>6. (\text{ArCO}_2\text{Me}) hydrolysis (acid) in aq. MeOH (25°)</td>
<td>(k)</td>
<td>+0.03</td>
</tr>
<tr>
<td>7. (\text{ArCH}_2\text{CO}_2\text{H}) dissociation in (\text{H}_2\text{O}) (25°)</td>
<td>(K)</td>
<td>+0.47</td>
</tr>
<tr>
<td>8. (\text{ArCH}_2\text{Cl}) with (\text{I}^\ominus) in (\text{Me}_2\text{CO}) (20°)</td>
<td>(k)</td>
<td>+0.79</td>
</tr>
<tr>
<td>9. (\text{ArCH}_2\text{CO}_2\text{Et}) hydrolysis (base) in aq. EtOH (30°)</td>
<td>(k)</td>
<td>+0.82</td>
</tr>
<tr>
<td>10. (\text{ArCO}_2\text{H}) dissociation in (\text{H}_2\text{O}) (25°)</td>
<td>(K)</td>
<td>+1.00</td>
</tr>
<tr>
<td>(standard)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. (\text{ArOH}) dissociation in (\text{H}_2\text{O}) (25°)</td>
<td>(K)</td>
<td>+2.01</td>
</tr>
<tr>
<td>12. (\text{ArCN}) with (\text{H}_2\text{S}) (base) in EtOH (60.6°)</td>
<td>(k)</td>
<td>+2.14</td>
</tr>
<tr>
<td>13. (\text{ArCO}_2\text{Et}) hydrolysis (base) in aq. EtOH (25°)</td>
<td>(k)</td>
<td>+2.51</td>
</tr>
<tr>
<td>14. (\text{ArNH}_2^\ominus) dissociation in (\text{H}_2\text{O}) (25°)</td>
<td>(K)</td>
<td>+2.73</td>
</tr>
</tbody>
</table>

Calculation of Relative Reaction Rate

\[
\log \frac{k_{m-\text{NO}_2}}{k_H} = \rho \sigma_{m-\text{NO}_2}
\]

i.e.

\[
\log \frac{63.5}{1} = \rho \times 0.71 \quad \therefore \quad \rho = 2.54
\]

\[
\log \frac{k_{p-\text{MeO}}}{k_H} = \rho \sigma_{p-\text{MeO}}
\]

i.e.

\[
\log \frac{k_{p-\text{MeO}}}{k_H} = 2.54 \times -0.27 \quad \therefore \quad \frac{k_{p-\text{MeO}}}{k_H} = 0.21
\]

Base-Catalysed Hydrolysis of \(\text{XC}_6\text{H}_5\text{CO}_2\text{Et} \)

\[
\text{CO}_2\text{Et} + \Theta \text{OH} \xrightarrow{k_x} \text{CO}_2\Theta + \text{EtOH}
\]

when \(X = m-\text{NO}_2 \):

\[
\rho_{m-\text{NO}_2} = 63.5
\]

when \(X = p-\text{MeO} \):

\[
\rho_{p-\text{MeO}} = ?
\]

Effect of \(m \)-Substituents on Ester Hydrolysis

\[
\sigma_{m-\text{NO}_2} = +0.71
\]

\[
\frac{k_{m-\text{NO}_2}}{k_H} = 63.5
\]

\[
\sigma_{m-\text{Me}} = -0.07
\]

\[
\frac{k_{m-\text{Me}}}{k_H} = 0.66
\]
EFFECT OF m- v p-MeO ON ESTER HYDROLYSIS

BASE-CATALYSED HYDROLYSIS OF XCH₂₅CO₂Et: ρ = +2.51

Acid dissociation (H₂O) ρ
XC₆H₅CO₂H 1.00 (standard reaction)
XC₆H₅CH₃CO₂H 0.49
XC₆H₅CH₂CH₂CO₂H 0.21
XC₆H₅CH=CHCO₂H 0.47

ρ VALUES FOR DISSOCIATION OF XCH₂₅CO₂H

1. XC₆H₅CO₂H + H₂O ⇌ XC₆H₅CO₂⁻ + H₃O⁺
 p-N O₂

2. XC₆H₅CH₃OH + H₂O ⇌ XC₆H₅CH₃O⁻ + H₃O⁺
 p-CN

after Taft, R W and Lewis, I C.,
J Amer Chem Soc, 1958, 80, 2437

BENZOYLATION OF XC₆H₅NH₂: ρ = -2.69

COMPARISON OF AQUEOUS DISSOCIATIONS OF XC₆H₅CO₂H
AND XC₆H₅OH
22. ELECTRONIC EFFECTS IN p-$NO_2C_6H_4CO_2H$ AND p-$NO_2C_6H_4OH$

DISSOCIATIONS

<table>
<thead>
<tr>
<th>Substituent, X</th>
<th>σ^-_{p-X}</th>
<th>σ^+_{p-X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2Et</td>
<td>0.68</td>
<td>0.45</td>
</tr>
<tr>
<td>COMe</td>
<td>0.84</td>
<td>0.50</td>
</tr>
<tr>
<td>CN</td>
<td>0.88</td>
<td>0.66</td>
</tr>
<tr>
<td>CHO</td>
<td>1.03</td>
<td>0.43</td>
</tr>
<tr>
<td>NO_2</td>
<td>1.27</td>
<td>0.78</td>
</tr>
</tbody>
</table>

23. σ^-_X v. σ^+_X FOR SOME ELECTRON-WITHDRAWING p-SUBSTITUENTS

24. SOLVOLYSIS OF $XC_6H_4CMe_2Cl$

25. $\log \frac{k_X}{k_H} v. \sigma_X$ FOR SOLVOLYSIS OF $XC_6H_4CMe_2Cl$

26. S_{N1} SOLVOLYSIS OF $XC_6H_4CMe_2Cl$

27. THROUGH CONJUGATION WITH ELECTRON-DONATING p-SUBSTITUENTS
Table:

<table>
<thead>
<tr>
<th>Substituent, X</th>
<th>σ^+_{p-X}</th>
<th>σ^-_{p-X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$H$_5$</td>
<td>-0.18</td>
<td>-0.01</td>
</tr>
<tr>
<td>Me</td>
<td>-0.31</td>
<td>-0.17</td>
</tr>
<tr>
<td>MeO</td>
<td>-0.78</td>
<td>-0.27</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>-1.30</td>
<td>-0.66</td>
</tr>
<tr>
<td>NMe$_2$</td>
<td>-1.70</td>
<td>-0.83</td>
</tr>
</tbody>
</table>

28. $\sigma^+ \gamma \sigma^-$ FOR SOME ELECTRON-DONATING P-SUBSTITUENTS

$$\log \frac{k_x}{k_H} = \rho [\sigma_x + r (\sigma^+_{p-X} - \sigma^-_{p-X})]$$ \text{[7]}

29. YUKAWA-TSUNO RELATION

$$O\text{SiEt}_3 \rightarrow O\text{OH} \rightarrow X \quad + \quad \text{Et}_3\text{SiOH}$$

30. BASE-CATALYSED HYDROLYSIS OF XC$_6$H$_5$OSiEt$_3$.

31. TRANSITION STATES IN WHICH THROUGH CONJUGATION OPERATES

- $\rho = +3.52$
- $r = 0.50$
- $\rho = -4.54$
- $r = 1.00$ (by definition)

32. ACETOLYSIS OF 3-ARYL-2-BUTYL BROMYLATES

33. S^2 ACETOLYSIS OF 3-ARYL-2-BUTYL BROMYLATES

34. XC$_6$H$_5$ AS AN INTERNAL NUCLEOPHILE

[B$_5$ = p - BrC$_6$H$_4$SO$_2$]
THREO 3-ARYL-2-BUTYL BROSYLATES

VARIATION IN YIELD OF THREO PRODUCT WITH SUBSTITUENT, X

<table>
<thead>
<tr>
<th>Substituent, X</th>
<th>Yield of threo product - 2 *</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-MeO</td>
<td>100%</td>
</tr>
<tr>
<td>p-Me</td>
<td>88%</td>
</tr>
<tr>
<td>m-Me</td>
<td>68%</td>
</tr>
<tr>
<td>H</td>
<td>59%</td>
</tr>
<tr>
<td>p-Cl</td>
<td>39%</td>
</tr>
<tr>
<td>m-Cl</td>
<td>12%</td>
</tr>
<tr>
<td>m-CF₃</td>
<td>6%</td>
</tr>
<tr>
<td>p-NO₂</td>
<td>1%</td>
</tr>
</tbody>
</table>

* = % of reaction proceeding by internal attack

DISTINGUISHABLE PRODUCTS FROM EXTERNAL AND INTERNAL NUCLEOPILIC ATTACK

HYDROLYSIS OF XCO₂H IN 99.9% H₂SO₄
ACID-CATALYSED ESTER HYDROLYSIS - COMMON ($A_{Ac}2$) PATHWAY

POSSIBLE TAUTOMERIC EQUILIBRIUM IN PROTONATED METHYL ESTER

ACID-CATALYSED ESTER HYDROLYSIS - $A_{Ac}1$ PATHWAY

CYCLODEHYDRATION OF 2-PHENYLTRIARYLMETHANOLS
CYCLODEHYDRATION AS DEHYDRATION/INTERNAL ELECTROPHILIC SUBSTITUTION

Base-catalysed hydrolysis ($B_{AC}2$): $p = 2.51$

Acid-catalysed hydrolysis ($A_{AC}2$): $p = 0.03$

STABILISATION OF CARBONIUM ION INTERMEDIATE FROM ALCOHOL WITH X = Z = OMe
T.S. for base-catalysed hydrolysis (B\text{AC} 2)

T.S. for acid-catalysed hydrolysis (A\text{AC} 2)

TRANSITION STATES FOR B\text{AC} 2 AND A\text{AC} 2 ESTER HYDROLYSIS

\[
\log \frac{[R^*]}{[R_{-}]}_{\text{base}} - \log \frac{[R^*]}{[R_{-}]}_{\text{acid}} = \rho^*_0 \sigma^*_R \quad \ldots \ [8]
\]

EQUATION FOR OPERATION OF POLAR EFFECTS ONLY IN ESTER HYDROLYSIS

\[
\log \frac{[R^*]}{[R_{-}]} = \rho^*_0 \sigma^*_R \quad \ldots \ [9]
\]

GENERALISED TAFT POLAR EFFECT EQUATION

\[
\log \frac{[R^*]}{[R_{-}]} = \rho^*_0 \sigma^*_R + \delta E_s \quad \ldots \ [11]
\]

INCORPORATION OF VARIABLE STERIC PARAMETER, \(\delta E_s \)

ACID-CATALYSED HYDROLYSIS OF \(\sigma \)-SUBSTITUTED BENZAMIDES

\[
R \text{ in } \text{RCO}_2\text{Et} \quad \delta E_s
\]

\begin{align*}
\text{H} & \quad +1.24 \\
\text{Me} & \quad 0 \text{ (by definition)} \\
\text{Et} & \quad -0.07 \\
\text{ClCH}_2 & \quad -0.24 \\
\text{ICH}_2 & \quad -0.37 \\
\text{PhCH}_3 & \quad -0.38 \\
\text{Me(CH}_2)_3 & \quad -0.39 \\
\text{Me}_2\text{CHCH}_2 & \quad -1.13 \\
\text{Me}_3\text{C} & \quad -1.54 \\
\text{Me}_3\text{CCH}_2 & \quad -1.74 \\
\text{Ph}_2\text{CH} & \quad -1.76 \\
\text{Et}_3\text{C} & \quad -3.81
\end{align*}
Reaction

\[\text{ArCO}_2\text{H} + \text{H}_2\text{O} \rightleftharpoons \text{ArCO}_2^- + \text{H}_3\text{O}^+ (\text{H}_2\text{O}) \]

\[\text{by definition} \]

\[\begin{align*}
&\text{H}_2\text{O} & 1.00 \\
&\text{aq. MeOH} (50\% \text{ H}_2\text{O}) & 1.60 \\
&\text{aq. EtOH} (70\% \text{ aq. dioxan}) & 1.83 \\
&\text{aq. EtOH} (85\% \text{ aq. EtOH}) & 2.54 \\
&\text{aq. Me}_2\text{CO} (20\% \text{ H}_2\text{O}) & -0.67 \\
&\text{MeOH} & -1.09 \\
&\text{EtOH} & -2.03 \\
&\text{Me}_2\text{CHOH} & -2.75 \\
&\text{Me}_3\text{COH} & -3.26 \\
\end{align*} \]

VARIATION OF \(\beta \) WITH SOLVENT

\[\text{ArCO}_2\text{H} + \text{ROH} \rightleftharpoons \text{ArCO}_2^- + \text{ROH}^- \text{[R = H or Et]} \]

DISSOCIATION OF \(\text{ArCO}_2\text{H} \) IN HYDROXYLIC SOLVENTS

\[\begin{align*}
\text{Me}_3\text{C-Cl} & \rightarrow \text{Me}_3\text{C}^+ & \text{Cl}^- & \rightarrow \text{Me}_3\text{C-S} \\
\text{slow} & \text{ion pair} & \text{intermediate} & \text{fast} \\
\text{[}S = \text{solvent}] \\
\end{align*} \]

\[\log k_A - \log k_0 = \gamma_A - \gamma_0 \quad \ldots \quad [12] \]

GRUNWALD-WINSTEIN: STANDARD REACTION AND EQUATION

Solvent Parameter, \(\gamma_A \), Values

\[\log \frac{k_A}{k_0} = m \gamma_A \quad \ldots \quad [13] \]

Grunwald-Winstein Equation

<table>
<thead>
<tr>
<th>Halide</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH(Me)Br</td>
<td>1.20</td>
</tr>
<tr>
<td>Me_3CCL</td>
<td>1.00 (by definition)</td>
</tr>
<tr>
<td>Me_3CBr</td>
<td>0.94</td>
</tr>
<tr>
<td>EtMe_2CBr</td>
<td>0.90</td>
</tr>
<tr>
<td>CH_3=CHCH(Me)Cl</td>
<td>0.89</td>
</tr>
<tr>
<td>EtBr</td>
<td>0.34</td>
</tr>
<tr>
<td>Me(CH_2)_3Br</td>
<td>0.33</td>
</tr>
</tbody>
</table>

SUBSTRATE PARAMETER, \(m \), VALUES
\[A \rightarrow B \xrightarrow{k} A^\circ B^\circ \]
slow

SLOW STEP REQUIREMENT FOR GRUNWALD-WINSTEIN

Equilibrium constant:

\[\Delta G^0 = -2.303RT \log k \]

\[\Delta G^0 = \Delta H^0 - T \Delta S^0 \]

Rate constant:

\[\Delta G^+ = -2.303RT \log k \left(\frac{h}{kT} \right) \]

\[\Delta G^+ = \Delta H^+ - T \Delta S^+ \]

\[k' = \text{Boltzmann's constant} \]

\[h = \text{Planck's constant} \]

Relationship between \(\log k, \log k', \Delta G, \Delta H \text{ and } \Delta S \)

1. \(\Delta H \) is linearly related to \(\Delta S \) for the series
2. \(\Delta H \) is constant for the series
3. \(\Delta S \) is constant for the series

Conditions Necessary for Linear Free Energy Relationships

Further Reading

