

The structural basis for ligand efficacy in the β_1 -adrenoceptor

Chris Tate

...........

4.4% of FDA approved drugs target the β_1 and β_2 adrenoceptors

β_1 receptor Heart

Beta blockers (antagonists) e.g. bucindolol carvedilol

various heart problems

Sympathomimetics (agonists) e.g. dobutamine

heart failure

β₂ receptor Lungs

asthma

Antagonists: receptor inhibitors

Agonists: receptor activators

Differences in activity between β_1 and β_2 adrenergic receptors

β₂AR shows higher basal (constitutive) activity

Engelhardt et al. (2001) Mol Pharm 60, 712-717

 β_2 AR shows greater efficacy (response to agonist stimulus) than β_1 AR

There are also important differences in ligand selectivity between the two receptors

But tm helices of β_1 and β_2 are 67% identical, and there are only two differences within 8Å of the ligand binding pocket

Comparison of the ligand binding pockets of β_1 and β_2 adrenergic receptors

There are only two amino acid substitutions within 8Å of the ligand binding site

Cherezov *et al.* (2007) Science **318**, 1258-1265 Warne *et al.* (2008) Nature **454**, 486-451

Comparison of the thermostabilities of the human and turkey β_1 -adrenoceptors with the human β_2 -adrenoceptor

β₁AR-m23 is a thermostabilised mutant ideal for crystallography

The six thermostabilising mutations have affected the global conformation of the receptor so that it is predominantly in an inactive (R) state

OG: octylglucoside; NG:nonylglucoside; DM: decylmaltoside; DDM: dodecylmaltoside

β1AR-m23 is stable in short-chain detergents like octylglucoside, which facilitates the formation of well-ordered crystals in vapour diffusion experiments

Thermostabilised βAR-m23 receptor couples to G proteins in a whole cell assay and shows no basal activity

Thermostabilisation of the β_1 -adrenergic receptor

Serrano-Vega et al. (2008) PNAS 105, 877-882

Crystallisation construct of the β_1 receptor

Warne et al. (2009) Protein Exp. Purif. 65, 204-213

Structure the thermostabilised avian β_1 -adrenoceptor

Tony Warne

Warne *et al.* (2008) Nature **454**, 486-491 Moukhametzianov *et al* (2011) PNAS. **108**, 8228-8232

Cyanopindolol binding site

FAQs 7

- Q: Are the structures of thermostabilised receptors and those fused to T4 lysozyme the same?
- A: Yes, in the binding pocket, but there may be differences in the loop regions due to perturbations caused either by T4 lysozyme or crystal packing interactions

Structural basis for allosteric regulation of A2AR by Na⁺ ions

Liu et al (2011) Science 337, 232-236

The ultra-stable β_1 AR mutant JM50 contains 3 additional thermostabilising mutations, which gave 12°C further stability to β_1 AR-m23

Jenny Miller-Gallacher

Miller & Tate (2011) J. Mol. Biol. 413, 628-638

The stability of β_1 AR-JM50 in different detergents

Detergent	Tm (ºC)
Nonylglucoside	34.5 ± 0.7
Octylglucoside	26.8 ± 0.2
Heptylthioglucoside	22.5 ± 0.7
Fos choline 9	35.3 ± 0.5
SDS	33.0 ± 0.7
LDAO	31.6 ± 0.3
CYMAL3	33.8 ± 0.5
DHPC	37.4 ± 0.9

2.1 Å resolution structure of an ultra-stable β_1 AR mutant crystallised in LCP reveals an intramembrane Na⁺ binding site

Miller-Gallacher et al. (2014) PLoS One 9, e92727

The intramembrane Na⁺ is part of an extended hydrogen bond network from the ligand to the DRY motif

Remarkable conservation of the Na⁺ binding pocket and positions of water molecules between β1AR and A_{2A}R: overall rmsd of Cα, 2.4 Å rmsd of Cα in the Na⁺ binding pocket, 0.3 Å

The intramembrane Na⁺ ion in β_1 AR does not affect receptor activation

Agonist binding is unaffected by Na⁺ concentration

The affinity of the G protein mimetic Nb80 and its efficacy in increasing agonist affinity is unaffected by Na⁺ concentration

Agonist activation of D87A^{2.50} is impaired and basal activity is lowered in stable cell lines

Agonist affinities are identical

Expression levels are identical

Asp^{2.50} that co-ordinates Na⁺ in the R state makes 3 hydrogen bonds to side chains in the R* state

Structure of $\beta_2 AR$ in the activated state bound to Nb80 showing re-organisation of the Na⁺ binding pocket

So what is the role of the intramembrane Na⁺ in β_1 AR?

A: stabilisation of the ligand-free receptor

The stability of ligand-free detergent solubilised $\beta_1 AR$ is decreased by 7.5 °C in Na⁺-free buffer compared to 150 mM NaCl

Mutation of residues lining the Na⁺ binding pocket all decrease the stability of the ligand-free detergent-solubilised receptor

Na⁺ is an allosteric antagonist of $A_{2A}R$ and not of β_1AR because of the different energy landscapes of the receptors

The Na+ and water create a 'soft' interface between 5 transmembrane helices (H2, H3, H6 and H7) that is sufficient to stabilise the ligand free structure, but is of sufficiently low energy to be easily disrupted on agonist binding to increase the probability of the R to R* transition.

Crystal structures determined of thermostabilised $\beta_1 AR$

Ligand	PDB	Space group	Ligand type	Detergent or Lipidic Cubic Phase	Resolution Å	Reference
7-Methyl cyanopindolol		P2 ₁	Inverse agonist	D	2.50	Sato et al. unpublished
Cyanopindolol	2vt4	P1	Weak partial agonist	D	2.70	Warne <i>et al</i> . Nature (2008)
Cyanopindolol	4bvn	P2 ₁ 22 ₁	Weak partial agonist	LCP	2.10	Miller-Gallacher <i>et al.</i> PlosOne (2014)
Nadolol		C2	Weak partial agonist	D	3.40	Li et al. unpublished
Timolol		C2	Weak partial agonist	LCP	3.40	п
Carazolol	2ycw	P2 ₁	Weak partial agonist	D	3.00	Moukhametzianov <i>et al.</i> PNAS (2011)
Cyanopindolol	2усх 2усу	P2 ₁	Weak partial agonist	D	3.15 3.25	п
Bucindolol	4ami	P2 ₁	Biased agonist	D	3.20	Warne <i>et al.</i> Structure (2012)
Carvedilol	4amj	P2 ₁	Biased agonist	D	2.30	<i>II</i>
Dobutamine	2y00 2y01	P2 ₁	Partial agonist	D	2.70	Warne <i>et al</i> . Nature (2011)
Salbutamol	2y04	P2 ₁	Partial agonist	D	3.00	ш
Isoprenaline	2y03	P2 ₁	Full agonist	D	2.85	u
Carmoterol	2y02	P2 ₁	Full agonist	D	2.60	ш
Indole fragment 19	3zpq	P2 ₁	?	D	2.80	Christopher <i>et al.</i> J Med Chem (2013)
Quinolone fragment 20	3zpr	P2 ₁	?	D	2.70	п

What are the structural differences in the β_1 receptor when an agonist binds compared to when an antagonist binds?

tβ1	hβ2	B-W
D121	D138	3.32
S211	S203	5.42
S215	S207	5.46
N310	N293	6.55
N329	N312	7.39
W330	W313	7.40

Noradrenaline

Warne et al. (2011) Nature 469, 241-244

Determination of serine rotamer configurations in β_1AR structures

Ser211^{5.43}, β_1 AR with carvedilol (2.3Å)

gauche+

trans (best fit)

Ser211^{5.43}, β_1 AR with cyanopindolol (2.1Å)

gauche+ (best fit)

Assignment of water molecules in β_1AR structures, β_1AR with carvedilol (2.3Å)

 $\beta_1 AR$ Positive density features at the overview H5-H3/4 interface cytoplasm

Assignment of water molecules in $\beta_1 AR$ structures, $\beta_1 AR$ with carvedilol (2.3Å)

 $\beta_1 AR$ Positive density features at the H5-H3/4 interface overview cytoplasm

Three water molecules (+) fitted to density (B factors 21-46 Å²)

Assignment of water molecules in $\beta_1 AR$ structures, $\beta_1 AR$ with carvedilol (2.3Å)

 $\beta_1 AR$ overview polar interactions at the H5-H3/4 interface mediated by water molecules

hydrogen bonds (-----)

What are the structural differences in the β_1 receptor when a full agonist binds compared to when an inverse agonist binds?

Moukhametzianov et al (2011) PNAS 108, 8228-8232; Warne et al (2011) Nature 469, 241-244

A minimal interface is observed between H5 and H3/H4 in crystal structures of the β_1 and β_2 ARs with inverse agonists bound

The interactions at this interface differ between the two receptors because of the presence of Thr164^{4.56} in the β_2 AR instead of Val172^{4.56} as in the β_1 AR

Warne *et al* (2012) Structure **20**, 841-9

Serine rotamer changes occurring on the binding of full agonists decrease interactions to helix 5 and helix 3

The effect of the T164I polymorphism on the activity of the β_2 adrenergic receptor

Pharmacology of Thr 164 and Ile 164 isoforms

Small et al. (2003) Annu. Rev. Pharmacol. Toxicol. 43, 381-411

- agonist in Ile 164 isoform
- A Reduced response to B Reduced cardiac output in Ile 164 isoform

Rotamer conformation changes of Ser215^{5.46} occurs on agonist binding, but not when an antagonist binds

Cyanopindolol Weak partial agonist

tβ1	hβ2	B-W	tβ1	hβ2	B-W
D121	D138	3.32	F325	Y308	7.35
S211	S203	5.42	N329	N312	7.39
S212	S204	5.43	W330	W313	7.40
S215	S207	5.46	Y333	Y316	7.43
N310	N293	6.55			

Isoprenaline Full agonist

Is the rotamer change of Ser^{5.46} really that important in determining efficacy?

Add methyl group: 7-methyl-cyanopindolol

Tomomi Sato & Jill Baker; unpublished

The structure of β_1 AR bound to 7MeCyp shows a 0.5 Å expansion of the ligand binding pocket and confirms the rotamer of Ser215^{5.46}

7-methyl-cyanopindolol Inverse agonist

Cyanopindolol Weak partial agonist

tβ1	hβ2	B-W	tβ1	hβ2	B-W
D121	D138	3.32	F325	Y308	7.35
S211	S203	5.42	N329	N312	7.39
S212	S204	5.43	W330	W313	7.40
S215	S207	5.46	Y333	Y316	7.43
N310	N293	6.55			

Tomomi Sato & Jill Baker; unpublished

A structural explanation for the differences in activity between the human β_1 AR-Arg389 and β_1 AR-Gly389 isoforms

The β_1 AR-Arg389 isoform is more active than the β_1 AR-Gly389 isoform:

increased adenylyl cyclase activity in cell lines

greater contractility in cardiomyocytes

and increased sensitivity to carvedilol

The environment of R355^{8.56} in the crystal structure of the thermostabilized β_1 AR

The human β_1 AR-Arg389 also features an unfavourable pairing of Lys85^{1.59} and Arg389^{8.56}, this is absent in β_1 AR-Gly389

Residue pairings at the H1/H8 interface in other βARs

	pos ^{1.59}	pos ^{8.56}
β ₁	K 85	R/G 389
β ₂	K 60	E 338
β ₃	W/K 64 *	R

*Another polymorphism that affects β_3 and has been associated with obesity

The destabilizing effect of Lys-Arg juxtaposition has been utilized to enhance constitutive activity in the human β_1 AR

Structures of agonist-bound GPCRs

$\beta_1 AR$

- 2.6 3.0 Å resolution
- Isoprenaline, carmoterol dobutamine, salbutamol
- Six mutations
- R-like state

Warne *et al.* (2011) Nature **469**, 241-244

- 2.6 3.0 Å resolution
- NECA, adenosine
- Four mutations
- R*-like state

Lebon *et al.* (2011) Nature **474**, 521

NTSR1

- 2.8 Å resolution
- Neurotensin 8-13
- Six mutations
- T4 lysozyme fusion
- R*-like state

White *et al.* (2012) Nature **490**, 508-513

Acknowledgements

MRC Laboratory of Molecular Biology

β₁ adrenergic receptor
Tony Warne
Rony Nehmé
Pat Edwards
*Tomomi Sato
*Maria Serrano-Vega
*Jenny Miller
*Rouslan Moukhametzianov
*Jessica Li

Adenosine A_{2A} receptor Byron Carpenter *Francesca Magnani *Guillaume Lebon

Neurotensin receptor *Yoko Shibata Serotonin transporter Juni Andréll *Saba Abdul-Hussein

EmrE

Samantha Wynne *Iban Ubarretxena-Belandia *Vladimir Korkhov *Joyce Baldwin *Jo Butler

Bioinformatics Madan Babu AJ Venkatakrishnan

Richard Henderson Andrew Leslie

* Alumni

Gebhard Schertler (PSI, Switzerland)

Reinhard Grisshammer (NIH, Bethesda)

> Jillian Baker (Nottingham, UK)

Ali Jazayeri Chris Langmead Kirstie Bennett Miles Congreve Fiona Marshall (Heptares Therapeutics, UK)

Acknowledgements

wellcometrust

Staff at:

Diamond Harwell (beamline 124) ESRF Grenoble (beamlines ID13,ID23) SLS Villigen (beamline PX1)