The structural basis for ligand efficacy in the β_1-adrenoceptor

Chris Tate
4.4% of FDA approved drugs target the \(\beta_1 \) and \(\beta_2 \) adrenoreceptors

\(\beta_1 \) receptor
- Heart
- Beta blockers (antagonists)
 - e.g. bucindolol
 - carvedilol
- Various heart problems

\(\beta_2 \) receptor
- Lungs
- Bronchodilators (agonists)
 - e.g. salbutamol
 - formoterol
 - carmoterol
 - Asthma

Sympathomimetics (agonists)
- e.g. dobutamine
- Heart failure

Antagonists: receptor inhibitors

Agonists: receptor activators
Differences in activity between β_1 and β_2 adrenergic receptors

β_2AR shows higher basal (constitutive) activity

β_2AR shows greater efficacy (response to agonist stimulus) than β_1AR

There are also important differences in ligand selectivity between the two receptors

But α helices of β_1 and β_2 are 67% identical, and there are only two differences within 8Å of the ligand binding pocket

Engelhardt et al. (2001) Mol Pharm 60, 712-717
Comparison of the ligand binding pockets of β_1 and β_2 adrenergic receptors

There are only two amino acid substitutions within 8Å of the ligand binding site

Cherezov et al. (2007) Science 318, 1258-1265
Comparison of the thermostabilities of the human and turkey β_1-adrenoceptors with the human β_2-adrenoceptor
\(\beta_1 \text{AR-m23} \) is a thermostabilised mutant ideal for crystallography

The six thermostabilising mutations have affected the global conformation of the receptor so that it is predominantly in an inactive (R) state.

\(\beta_1 \text{AR-m23} \) is stable in short-chain detergents like octylglucoside, which facilitates the formation of well-ordered crystals in vapour diffusion experiments.

\[\text{OG: octylglucoside; NG: nonylglucoside; DM: decylmaltoside; DDM: dodecylmaltoside}\]

Thermostabilised βAR-m23 receptor couples to G proteins in a whole cell assay and shows no basal activity.
Thermostabilisation of the β_1-adrenergic receptor

Serrano-Vega et al. (2008) PNAS 105, 877-882
β1 data collection: t1043

Isotropic diffraction

Spacegroup P1

a = 55.5 Å, b = 86.8 Å, c = 95.50 Å
α = 67.60, β = 73.30, γ = 85.80
Crystallisation construct of the β_1 receptor

Warne et al. (2009) Protein Exp. Purif. 65, 204-213
Structure the thermostabilised avian β_1-adrenoceptor

Warne et al. (2008) Nature 454, 486-491
Moukhametzianov et al (2011) PNAS. 108, 8228-8232
Cyanopindolol binding site
Q: Are the structures of thermostabilised receptors and those fused to T4 lysozyme the same?

A: Yes, in the binding pocket, but there may be differences in the loop regions due to perturbations caused either by T4 lysozyme or crystal packing interactions.

β₁AR versus β₂AR (overall rmsd 0.6 Å)

Agonist-bound conformations of A₂AR
(overall rmsd 0.6 Å)

Tate (2012) Trends Biochem. Sci. 37, 343-352
Structural basis for allosteric regulation of A$_{2A}$R by Na$^+$ ions

Liu et al. (2011) Science 337, 232-236

Antagonist binding

<table>
<thead>
<tr>
<th></th>
<th>A$_{2A}$AR-WT</th>
<th>A$_{2A}$AR-BRIL-ΔC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaNCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniloride + NaNCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choline chloride</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agonist binding

<table>
<thead>
<tr>
<th></th>
<th>A$_{2A}$AR-WT</th>
<th>A$_{2A}$AR-BRIL-ΔC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaNCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniloride + NaNCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choline chloride</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EC50

~40-50 mM

Inactive state

Active-like state

Legend

- ![Image D](image21.png)
The ultra-stable β_1AR mutant JM50 contains 3 additional thermostabilising mutations, which gave 12°C further stability to β_1AR-m23.
The stability of β_1AR-JM50 in different detergents

<table>
<thead>
<tr>
<th>Detergent</th>
<th>Tm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonylglucoside</td>
<td>34.5 ± 0.7</td>
</tr>
<tr>
<td>Octylglucoside</td>
<td>26.8 ± 0.2</td>
</tr>
<tr>
<td>Heptylthioglucoiside</td>
<td>22.5 ± 0.7</td>
</tr>
<tr>
<td>Fos choline 9</td>
<td>35.3 ± 0.5</td>
</tr>
<tr>
<td>SDS</td>
<td>33.0 ± 0.7</td>
</tr>
<tr>
<td>LDAO</td>
<td>31.6 ± 0.3</td>
</tr>
<tr>
<td>CYMAL3</td>
<td>33.8 ± 0.5</td>
</tr>
<tr>
<td>DHPC</td>
<td>37.4 ± 0.9</td>
</tr>
</tbody>
</table>
2.1 Å resolution structure of an ultra-stable β1AR mutant crystallised in LCP reveals an intramembrane Na⁺ binding site

Miller-Gallacher et al. (2014) PLoS One 9, e92727
The intramembrane Na⁺ is part of an extended hydrogen bond network from the ligand to the DRY motif.
Remarkable conservation of the Na\(^+\) binding pocket and positions of water molecules between β1AR and A\(_{2A}\)R:
- Overall rmsd of Ca, 2.4 Å
- Rmsd of Ca in the Na\(^+\) binding pocket, 0.3 Å
The intramembrane Na⁺ ion in β₁AR does not affect receptor activation.

Agonist binding is unaffected by Na⁺ concentration.

The affinity of the G protein mimetic Nb80 and its efficacy in increasing agonist affinity is unaffected by Na⁺ concentration.

Rony Nehmé
Agonist activation of $D87A^{2.50}$ is impaired and basal activity is lowered in stable cell lines.

Diagram:
- **[cAMP] (nM)** vs **Log [isoprenaline] (M)**
 - WT vs D87A

Agonist affinities are identical

Expression levels are identical
Asp2.50 that co-ordinates Na+ in the R state makes 3 hydrogen bonds to side chains in the R* state.

Structure of β_2AR in the activated state bound to Nb80 showing re-organisation of the Na+ binding pocket.
So what is the role of the intramembrane Na$^+$ in β$_1$AR?

A: stabilisation of the ligand-free receptor

The stability of ligand-free detergent solubilised β$_1$AR is decreased by 7.5 °C in Na$^+$-free buffer compared to 150 mM NaCl.

Mutation of residues lining the Na$^+$ binding pocket all decrease the stability of the ligand-free detergent-solubilised receptor.
Na\(^+\) is an allosteric antagonist of A\(_{2A}\)R and not of \(\beta_1\)AR because of the different energy landscapes of the receptors.

The Na\(^+\) and water create a ‘soft’ interface between 5 transmembrane helices (H2, H3, H6 and H7) that is sufficient to stabilise the ligand free structure, but is of sufficiently low energy to be easily disrupted on agonist binding to increase the probability of the R to R* transition.
Crystal structures determined of thermostabilised β₁AR

<table>
<thead>
<tr>
<th>Ligand</th>
<th>PDB</th>
<th>Space group</th>
<th>Ligand type</th>
<th>Detergent or Lipidic Cubic Phase</th>
<th>Resolution Å</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Methyl cyanopindolol</td>
<td>P2₁</td>
<td>Inverse agonist</td>
<td>D</td>
<td>2.50</td>
<td></td>
<td>Sato et al. unpublished</td>
</tr>
<tr>
<td>Cyanopindolol</td>
<td>4bvn</td>
<td>P2₁22₁</td>
<td>Weak partial agonist</td>
<td>LCP</td>
<td>2.10</td>
<td>Miller-Gallacher et al. PlosOne (2014)</td>
</tr>
<tr>
<td>Nadolol</td>
<td>C2</td>
<td>Weak partial agonist</td>
<td>D</td>
<td>3.40</td>
<td></td>
<td>Li et al. unpublished</td>
</tr>
<tr>
<td>Timolol</td>
<td>C2</td>
<td>Weak partial agonist</td>
<td>LCP</td>
<td>3.40</td>
<td></td>
<td>"</td>
</tr>
<tr>
<td>Carazolol</td>
<td>2ycw</td>
<td>P2₁</td>
<td>Weak partial agonist</td>
<td>D</td>
<td>3.00</td>
<td>Moukhametzianov et al. PNAS (2011)</td>
</tr>
<tr>
<td>Cyanopindolol</td>
<td>2ycx 2ycy</td>
<td>P2₁</td>
<td>Weak partial agonist</td>
<td>D</td>
<td>3.15</td>
<td>"</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>4amj</td>
<td>P2₁</td>
<td>Biased agonist</td>
<td>D</td>
<td>2.30</td>
<td>"</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>2y00 2y01</td>
<td>P2₁</td>
<td>Partial agonist</td>
<td>D</td>
<td>2.70</td>
<td>Warne et al. Nature (2011)</td>
</tr>
<tr>
<td>Salbutamol</td>
<td>2y04</td>
<td>P2₁</td>
<td>Partial agonist</td>
<td>D</td>
<td>3.00</td>
<td>"</td>
</tr>
<tr>
<td>Isoprenaline</td>
<td>2y03</td>
<td>P2₁</td>
<td>Full agonist</td>
<td>D</td>
<td>2.85</td>
<td>"</td>
</tr>
<tr>
<td>Carmoterol</td>
<td>2y02</td>
<td>P2₁</td>
<td>Full agonist</td>
<td>D</td>
<td>2.60</td>
<td>"</td>
</tr>
<tr>
<td>Quinolone fragment 20</td>
<td>3zpr</td>
<td>P2₁</td>
<td>?</td>
<td>D</td>
<td>2.70</td>
<td>"</td>
</tr>
</tbody>
</table>
What are the structural differences in the β_1 receptor when an agonist binds compared to when an antagonist binds?

<table>
<thead>
<tr>
<th></th>
<th>tβ1</th>
<th>hβ2</th>
<th>B-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>D121</td>
<td>D138</td>
<td></td>
<td>3.32</td>
</tr>
<tr>
<td>S211</td>
<td>S203</td>
<td></td>
<td>5.42</td>
</tr>
<tr>
<td>S215</td>
<td>S207</td>
<td></td>
<td>5.46</td>
</tr>
<tr>
<td>N310</td>
<td>N293</td>
<td></td>
<td>6.55</td>
</tr>
<tr>
<td>N329</td>
<td>N312</td>
<td></td>
<td>7.39</td>
</tr>
<tr>
<td>W330</td>
<td>W313</td>
<td></td>
<td>7.40</td>
</tr>
</tbody>
</table>

Noradrenaline

Warne et al. (2011) Nature 469, 241-244
Determination of serine rotamer configurations in β_1AR structures

Ser$211^{5.43}$, β_1AR with carvedilol (2.3Å)

Ser$211^{5.43}$, β_1AR with cyanopindolol (2.1Å)
Assignment of water molecules in β_1AR structures, β_1AR with carvedilol (2.3Å)

β_1AR overview

Positive density features at the H5-H3/4 interface
Assignment of water molecules in β_1AR structures, β_1AR with carvedilol (2.3Å)

β_1AR overview

Positive density features at the H5-H3/4 interface

Three water molecules (+) fitted to density (B factors 21-46 Å²)
Assignment of water molecules in β₁AR structures, β₁AR with carvedilol (2.3Å)

polar interactions at the H5-H3/4 interface mediated by water molecules

hydrogen bonds (-----)
What are the structural differences in the β_1 receptor when a full agonist binds compared to when an inverse agonist binds?

Carazolol,
Very weak partial agonist

Isoprenaline,
full agonist

Rotamer changes of S211$_{5.42}$ and S215$_{5.46}$

1.0 Å difference in distance between the Cα atoms of N329$_{7.39}$ and S211$_{5.42}$

hydrogen bonds (-----)

A minimal interface is observed between H5 and H3/H4 in crystal structures of the β_1 and β_2ARs with inverse agonists bound. The interactions at this interface differ between the two receptors because of the presence of Thr164$^{4.56}$ in the β_2AR instead of Val172$^{4.56}$ as in the β_1AR.

Hanson et al (2008) Structure 16, 897-905
Serine rotamer changes occurring on the binding of full agonists decrease interactions to helix 5 and helix 3.

β₁AR overview

β₁AR + full agonist

β₂AR + full agonist

Warne & Tate (2013) Biochem. Soc. Trans. 41, 159-165
The effect of the T164I polymorphism on the activity of the β₂ adrenergic receptor

Pharmacology of Thr 164 and Ile 164 isoforms

Graphs

A Reduced response to agonist in Ile 164 isoform

B Reduced cardiac output in Ile 164 isoform
Rotamer conformation changes of Ser215 occurs on agonist binding, but not when an antagonist binds.

- Cyanopindolol: Weak partial agonist
- Isoprenalin: Full agonist
Is the rotamer change of Ser5.46 really that important in determining efficacy?

Add methyl group: 7-methyl-cyanopindolol

Tomomi Sato & Jill Baker; unpublished
The structure of β_1AR bound to 7MeCyp shows a 0.5 Å expansion of the ligand binding pocket and confirms the rotamer of Ser215.$^{5.46}$

Cyanopindolol
Weak partial agonist

<table>
<thead>
<tr>
<th>$t\beta_1$</th>
<th>$h\beta_2$</th>
<th>B-W</th>
<th>$t\beta_1$</th>
<th>$h\beta_2$</th>
<th>B-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>D121</td>
<td>D138</td>
<td>3.32</td>
<td>F325</td>
<td>Y308</td>
<td>7.35</td>
</tr>
<tr>
<td>S211</td>
<td>S203</td>
<td>5.42</td>
<td>N329</td>
<td>N312</td>
<td>7.39</td>
</tr>
<tr>
<td>S212</td>
<td>S204</td>
<td>5.43</td>
<td>W330</td>
<td>W313</td>
<td>7.40</td>
</tr>
<tr>
<td>S215</td>
<td>S207</td>
<td>5.46</td>
<td>Y333</td>
<td>Y316</td>
<td>7.43</td>
</tr>
<tr>
<td>N310</td>
<td>N293</td>
<td>6.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7-methyl-cyanopindolol
Inverse agonist

Tomomi Sato & Jill Baker; unpublished
The β_1AR-Arg389 isoform is more active than the β_1AR-Gly389 isoform:

- increased adenylyl cyclase activity in cell lines
- greater contractility in cardiomyocytes
- and increased sensitivity to carvedilol

Mason et al (1999) JBC 274 12670-12674
The environment of R3558.56 in the crystal structure of the thermostabilized β1AR
The human β_1AR-Arg389 also features an unfavourable pairing of Lys85$^{1.59}$ and Arg389$^{8.56}$, this is absent in β_1AR-Gly389, more active isoform (model).

The destabilizing effect of Lys-Arg juxtaposition has been utilized to enhance constitutive activity in the human β_1AR.

Residue pairings at the H1/H8 interface in other βARs:

<table>
<thead>
<tr>
<th></th>
<th>pos$^{1.59}$</th>
<th>pos$^{8.56}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>K 85</td>
<td>R/G 389</td>
</tr>
<tr>
<td>β_2</td>
<td>K 60</td>
<td>E 338</td>
</tr>
<tr>
<td>β_3</td>
<td>W/K 64 *</td>
<td>R</td>
</tr>
</tbody>
</table>

*Another polymorphism that affects β_3 and has been associated with obesity.
Structures of agonist-bound GPCRs

β₁AR
- 2.6 - 3.0 Å resolution
- Isoprenaline, carmoterol
dobutamine, salbutamol
- Six mutations
- R-like state

Warne et al. (2011)
Nature 469, 241-244

A₂AR
- 2.6 - 3.0 Å resolution
- NECA, adenosine
- Four mutations
- R*-like state

Lebon et al. (2011)
Nature 474, 521

NTSR1
- 2.8 Å resolution
- Neurotensin 8-13
- Six mutations
- T4 lysozyme fusion
- R*-like state

White et al. (2012)
Nature 490, 508-513
Acknowledgements

MRC Laboratory of Molecular Biology

β₁ adrenergic receptor
Tony Warne
Rony Nehmé
Pat Edwards
*Tomomi Sato
*Maria Serrano-Vega
*Jenny Miller
*Rouslan Moukhametzianov
*Jessica Li

Adenosine A₂A receptor
Byron Carpenter
*Francesca Magnani
*Guillaume Lebon

Neurotensin receptor
*Yoko Shibata

Serotonin transporter
Juni Andréll
*Saba Abdul-Hussein

EmrE
Samantha Wynne
*Iban Ubarretxena-Belandia
*Vladimir Korkhov
*Joyce Baldwin
*Jo Butler

Bioinformatics
Madan Babu
AJ Venkatakrishnan

Richard Henderson
Andrew Leslie

* Alumni

Gebhard Schertler
(PSI, Switzerland)

Reinhard Grisshammer
(NIH, Bethesda)

Jillian Baker
(Nottingham, UK)

Ali Jazayeri
Chris Langmead
Kirstie Bennett
Miles Congreve
Fiona Marshall
(Heptares Therapeutics, UK)
Acknowledgements

Staff at:

Diamond Harwell (beamline I24)
ESRF Grenoble (beamlines ID13, ID23)
SLS Villigen (beamline PX1)