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Good experimental design is important in many studies of analytical
and other chemical processes. Complete factorial designs, which study
all the factors (experimental variables) affecting the system response,
using at least two levels (values) for each factor, can give rise to an
unacceptably large number of trial experiments. This is because even
apparently simple processes may be affected by a large number of
factors. Moreover these factors may affect the system response
interactively, i.e. the effect of one factor may depend on the levels of
others. Any interactions must also be distinguished from random
measurement errors. So it is more common to use partial factorial
designs in which some information, especially about interactions, may
be sacrificed in the interests of a manageable number of experiments.

Plackett-Burman fundamentals

A popular and economical approach that gives information only
on the effects of single factors, but not on interactions, is the
Plackett-Burman (PB) method, introduced in 1946 when the
authors were working for the British Ministry of Supply. This
method is well suited to ruggedness testing, i.e. establishing
whether the outcome of an analytical procedure is affected by
changes in each relevant factor. The most important feature of
PB designs is that they all involve 47 experiments, where n = 1,
2, 3... In each case the maximum number of factors that can be
studied is 4n — 1, so an 8-experiment PB design can study no
more than 7 factors, a 12-experiment design will handle up to 11
factors, and so on. This may seem to be inconvenient, but it
turns out to be a valuable feature of the method.

Suppose we wish to study four factors. Four experiments will
be then insufficient, so we shall have to use eight experiments in
a PB design, and have seven factors. This means that three of

the latter will be dummy factors; they will have no chemical
meaning at all. However it turns out that the apparent effects of
these dummy factors can be used to estimate the random
measurement errors (see below). The more dummy factors there
are, the better the estimate of such errors, so it is not
uncommon for experimenters to use a larger PB design than is
strictly necessary, thus getting higher quality information on
the significance of each “real” factor.

PB designs utilise two levels for each factor, the higher level
being denoted “+” and the lower “—” as usual. A further feature
of the PB method is that the + and — signs for the individual
trial experiments are assigned in a cyclical manner. If we utilise
eight experiments with seven factors labelled A-G, the levels for
the first experiment might be:

B C D E F G
+ - - + - + +

Such sequences of + and — signs are provided by generating
vectors and are widely available in the literature and in software
packages. The levels for the second experiment, again with four
+ and three — signs, are then obtained by moving the last sign
for the first experiment to the beginning of the line, giving:

A B C D E F G
+ + — — + — +

This cyclical process is repeated for the first seven experi-
ments. For the eighth experiment all the factors are set at the
low (—) level, giving an overall design in which there are 28 +
signs and 28 — signs, each factor having been studied four
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times at the higher level and four times at the lower. The
effect of each factor is then readily determined from the
expression:

2D_(+) = 20N

where N is the total number of experiments, eight in this case.
The (y+) terms are the responses when a given factor is at its
high level, and the (y—) terms reflect the responses for that
factor set to its low level. It can be shown that the effects for the
main factors determined in this way are not confounded with
each other (see AMCTB 36).

An example

In this example the experimental output y is the fluorescence
intensity (arbitrary units) of a single sample material, measured
using four different spectrometer excitation and emission
spectral bandwidths and wavelengths, factors A-D. We need an
8-experiment PB design, so there are three dummy factors,
labelled d1, d2, and d3, included alternately in Table 1.

From these results we can see that, for example, the effect of
factor Ais 0.25(10+9+10+8 — 9 — 7 — 7 — 7) = +1.75. Similarly
it can be shown that the effects of B, C, and D are +0.25, —1.25
and +0.75 respectively. Clearly a negative effect, as obtained
here with factor C, means that moving that factor from a high to
low value increases the system response (fluorescence intensity
in this case) rather than decreasing it. The effects of the dummy
factors d1, d2 and d3, are found by the same method to be
+0.75, +0.25, and +0.25 respectively.

How significant is each factor?

Simple ANOVA-related calculations will enable us to assess the
significance of the “real” factors. For each factor the sum of
squares (SS) in a two-level design is given by:

SS = N x (estimated effect)?/4
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The sums of squares for A, B, C, and D are thus 6.125,
0.125, 3.125, and 1.125 respectively. Each of these sums of
squares has just one degree of freedom, so their mean square
values (i.e., variances) are the same as the SS ones. The sums
of squares for the dummy factors d1, d2, and d3 are similarly
found to be 1.125, 0.125, and 0.125 respectively. The mean
sum of squares for these estimates of the random measure-
ment errors is thus 0.458: this has three degrees of freedom as
there are three dummy variables. Each of the individual
factors A-D can now be compared with this estimated random
error using a one-tailed F-test at the p = 0.05 significance
level. So for factor A the value of F is 6.125/0.458 = 13.37. The
critical value of F; ; at p = 0.05 is 10.13, so we can conclude
that the effect of changing the level of factor A is significant.
The same approach shows that factors B, C and D seem to
have no significant effect. Such calculations are in practice
performed using suitable software such as Minitab®, so once
the trial experiments are complete the conclusions can be
drawn at once.

Plackett-Burman in action

PB designs have been used in an enormous variety of chemical
and biochemical studies, synthetic as well as analytical. Spec-
troscopy, electrochemistry and chromatography have all
proved to be fertile fields for their application in measurement
science. In practice, designs with 12 and 20 runs seem to have
been most popular. This may be because PB designs where 4n
is a power of 2 [i.e. n = 2, 4, 8 etc.] are exactly equivalent to
some other fractional factorial designs, so PB methods confer
no advantage. Moreover performing (for example) 12 experi-
ments rather than 8 will provide extra dummy factors, hence
better estimates of the measurement error and of the possible
significance of the real factors. The potential for further
applications of PB designs is clear, especially in the develop-
ment of new or improved analytical methods. Evolutionary
methods such as simplex optimisation can be used to find the
best combination of factor levels, but when an optimum set of

Table 1
FACTORS

EXPERIMENT A d1 B d2 C d3 D Result y
1 + - - + - + + 10
2 + + - - + - + 9
3 + + + — — + 10
4 - + + + - - + 9
5 + - + + + - - 8
6 - + - + + + - 7
7 - - + - + + + 7
8 - - - - - - - 7
Effect +1.75 +0.75 +0.25 +0.25 -1.25 +0.25 +0.75 *
SS 6.125 1.125 0.125 0.125 3.125 0.125 1.125 *
F-value 13.4 * 0.3 * 6.8 * 2.5 *
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conditions has been found in this way we still need to know
whether the analytical results are unduly sensitive to small
changes in any of the factors.

However, the popularity of PB methods comes with a
significant health warning. PB designs are ideal for screening
purposes in systems where it is desired to identify a few main
factors affecting the outcome, and where interactions are not
significant. Theory shows that while the main factors in a PB
design are not confounded, there is strong confounding
between the main factors and any two-factor interactions that
may arise. So if there are significant interactions, PB methods
could provide misleading results. In recent years much atten-
tion has been given to diagnostic approaches for revealing
interactions in PB designs. These are beyond the scope of this
paper; but it is worth noting that if dummy factors seem to have
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unexpectedly high effect values, this might be a sign that
interactions are indeed present.

This Technical Brief, drafted by J.N. Miller, was prepared for
the Analytical Methods Committee by the Statistical
Subcommittee.
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About the AMC Statistical Subcommittee.

Statistics is the framework supporting all aspects of data quality in analytical science. The aim of the Statistical Method Sub-
committee is to optimise the use of statistical methods by analytical scientists, by:

e providing information about good basic statistical practice;

e investigating the benefits and limitations of both traditional and more modern statistical methods in analytical science;

o facilitating the use of newer statistical techniques by providing the necessary information in a readily usable form;

e applying statistical principles to undecided problems relating to quality in analytical data.
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