EPIGENETIC MODIFICATION FOR THE FUTURE TREATMENT OF INFLAMMATORY DISEASE

Peter J Barnes FRS, FMedSci
National Heart & Lung Institute
Imperial College, London, UK

Inflammation 2010: RSC Meeting November 2010

Imperial College Royal Brompton Hospital

THERAPEUTIC POTENTIAL OF EPIGENETICS

EPIGENETICS: non genetic changes in chromatin structure resulting in changes in gene expression
- DNA methylation- long-term changes, developmental
- Histone modification

DNA methylation
- DNA methyltransferase inhibitors (e.g. azacytidine):
 reverse silencing of good genes
- Stimulate methylation: silence bad genes
- Applicable to lung cancer, inflammation?
- Problems of specificity and targeting

Histone modification
- Involved in cancer, fibrosis, inflammation
- Small molecule modifiers now identified (including existing therapies)
Repressive chromatin
Decreased transcription
Inflammatory gene repression

Active chromatin
Increased transcription
Inflammatory gene expression

Multiple transcription factors
HAT = histone acetyltransferase

INFLAMMATORY GENE TRANSCRIPTION

Core histones
Histone acetylation

Histone acetylation
HAT = histone acetyltransferase

mRNA

CHROMATIN STRUCTURE

* = Acetylation sites: Lysine residues

H2A
H2B
H3
H4
DNA

H3AC
H2AC
HISTONE ACETYLATION

- Histone octamer: H3, H4, H2A, H2B
- Histone 4
- Histone acetylation: \(-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}_3^+\) → \(-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{NH}-\text{CO}-\text{CH}_3\)
- Lysine → ε-acetylated Lysine

HISTONE ACETYLATION AND GENE TRANSCRIPTION

- Gene repression
- Histone deacetylation: HDAC 1-11
- Corepressors

- Gene transcription
- Histone acetylation: HATs: CBP, p300, pCAF etc
- Coactivators

- DNA
 - Nucleosome (histone octamers)
 - RNA polymerase II
 - Transcription factor
 - Acetylation of Lys
HISTONE ACETYLATION

Histone acetyltransferase

Anti-acetylated histone H4

A549 cells

IL-1β (ng/mL)

HAT activity (dpm/µg protein)

IL-1β (ng/mL)

0 0.01 0.1 1

Histone acetyltransferase

Ito K et al: Mol Cell Biol 2000

HISTONE ACETYLATION AND GENE EXPRESSION

NF-κB regulated genes

- Chemokines: CXCL1, CXCL8, CCL2, CCL5, CCL11
- Cytokines: GM-CSF, TNF-α, IL-1β, IL-6
- Enzymes: iNOS, cPLA₂, COX-2, MMP-9
- Receptors: NK₁, NK₂, bradykinin B₁, B₂
- Peptides: endothelin-1
- Adhesion mols: ICAM-1

Inflammatory stimuli (e.g. IL-1β, TNF-α)

Inflammatory transcription
ACTIVATION OF INFLAMMATORY GENES

Coactivators e.g. CBP

Repressed chromatin CLOSED

INFLAMMATORY GENE REGULATION

Transcription factors e.g. NF-κB

Histone acetylation

NF-κB

INFLAMMATION

Corticosteroids

↑ HDAC

HAT

INFLAMMATORY PROTEINS e.g. GM-CSF, IL-8

Histone deacetylation

mRNA ↓

INFLAMMATION

Repressed chromatin CLOSED

Activated chromatin OPEN

Core histones

Chromatin transcription factors

Coactivators e.g. CBP

Histone acetylation

mRNA ↓

HAT

HAT

Histone deacetylation

HAT
EFFECT OF CORTICOSTEROID ON HDAC

A549 cells p65 (NF-κB) immunoprecipitates

<table>
<thead>
<tr>
<th></th>
<th>HDAC activity (dpm)</th>
<th>HDAC2 protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IL-1β</td>
<td>Dex (10⁻¹⁰M)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>*</td>
<td>Anti-HDAC2</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>Anti-p65</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Acetylation of lysine 8 on histone H4

CHROMATIN IMMUNOPRECIPITATION (ChIP) ASSAY

GM-CSF promoter (-70 to +32bp)

<table>
<thead>
<tr>
<th></th>
<th>AcK8 IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td></td>
</tr>
<tr>
<td>Dex</td>
<td>10 8 6 6 (-log M)</td>
</tr>
</tbody>
</table>

Acetylation of lysine 8 on histone H4
CORTICOSTEROID SUPPRESSION OF INFLAMMATORY GENES

Inflammatory stimuli
- e.g. IL-1β, TNF-α

Activated GR: highly specific for
activated inflammatory gene complex
(recognition of histone acetylation signature)

Corticosteroids

Inflammatory protein
(e.g. GM-CSF)

CBP
HAT

Gene activation

Gene repression

Deacetylation

Co-repressors

Recruitment

GR

HDAC2

EFFECT OF STEROID ON INFLAMMATORY GENES
Histone deacetylases (HDAC1-11):
- reverse histone acetylation
- switch off gene transcription
- HDAC2 switches off inflammatory genes
- HDAC2 recruited by glucocorticoid receptors to activated inflammatory genes: mediates suppression of inflammation by steroids

Ito K et al: FASEB J 2001

CORRELATION OF HDAC TO STEROID RESPONSE

Alveolar macrophage: normal smokers and non-smokers

Inhibitory effect of Dex on TNF-α (%)

Inhibitory effect of Dex on TNF-α (%)

Ito K et al: FASEB J 2001
HDAC2 KNOCK-DOWN: RNAi

Alveolar/sputum macrophages

<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>H2</th>
<th>Sc</th>
<th>H2</th>
<th>NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>αHDAC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing GM-CSF levels](image)

Non-treated	*Scrambled*	*HDAC2 KD*
Non-treated	LPS	LPS + Dex (10⁻⁶M)

Ito K et al.: J Exp Med 2006

HDAC2 IN COPD LUNG

Peripheral lung (surgical resection)

<table>
<thead>
<tr>
<th></th>
<th>H4 acetylation of κB binding site on IL-8 promoter (ChIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC2</td>
<td></td>
</tr>
</tbody>
</table>

↑ Histone acetylation of IL-8 gene correlated with ↓ HDAC2 → Neutrophilic inflammation

![Graph showing HDAC2 expression and IL-8 mRNA](image)

Non-smokers	*Normal smokers*	*COPD*
HDAC2 expression (ratio vs histone-1)	IL-8 mRNA (RT-PCR)	

Ito K et al: N Engl J Med 2005
HDAC2 AND STEROID RESPONSIVENESS IN COPD

Alveolar macrophages

HDAC activity

Plasmid vector with HDAC2 Restores HDAC2 to normal

COPD macrophages

GM-CSF secretion

Ito K et al: J Exp Med 2006

LPS + dexamethasone (1μM)

GM-CSF secretion

Empty vector HDAC2 vector HDAC1 vector

HDAC activity (ΔAFU)

n=6

Control

LPS

Ito K et al: BBRC 2004

NITRATION AND HDAC2 ACTIVITY

HDAC2 Immunoprecipitates

Anti-NT

Anti-HDAC2

C Sm COPD

Exhaled Peroxynitrite

Nitro-Tyr/HDAC2 ratio

N COPD

Osoata G et al: Chest 2009

HDAC2 activity (dpm/HDAC2)

p<0.001

p<0.001

Ito K et al: BBRC 2004
PEROXYNITRITE INDUCES STEROID RESISTANCE

Human airway epithelial cells

IL-1β + SIN-1 (500µM)

SIN-1: peroxynitrite generator

GM-CSF (% of control)

[0 - 100]

[Dexamethasone (-log M)]

C -12 -11 -10 -9 -8 -7 -6

Ito K et al: BBRC 2004

CORTICOSTEROID RESISTANCE IN COPD

COPD

Cigarette smoke

Inflammation

iNOS

ANTIOXIDANTS

iNOS INHIBITORS

Peroxynitrite scavengers

Peroxynitrite

THEOPHYLLINE

HDAC activator

Destruction by 28S proteasome

Proteasome inhibitors

Ub E3 ligase inhibitors

↑ Inflammatory genes

↓ Response to steroids

Barnes PJ: Ann Rev Physiol 2009

Osoata G et al: BBRC 2009

O2- → NO → Peroxynitrite

Tyr146

Tyr253

 Ub

Ub

Ub

HDAC2

THEOPHYLLINE

HDAC activator

Destruction by 28S proteasome

Proteasome inhibitors

Ub E3 ligase inhibitors

↑ Inflammatory genes

↓ Response to steroids

Barnes PJ: Ann Rev Physiol 2009

Osoata G et al: BBRC 2009
CORTICOSTEROID RESISTANCE

Oxidative stress Nitrative stress

Cell membrane

Steroid resistance

\[
\uparrow \text{PI3K-δ} \rightarrow \text{Akt} \rightarrow \text{HDAC2}
\]

Oxidative stress

Peroxynitrite

Akt (PKB)

HDAC2

Peripheral lung

PI3K-Akt PATHWAY

Oxidative stress

\[
\begin{align*}
\text{PI3K} & \rightarrow \text{Akt} (PKB) \\
& \rightarrow \text{HDAC2}
\end{align*}
\]

PI3K activation

\[
\text{PI3K-δ mRNA}
\]

To Y et al: Am J Respir Crit Care Med 2010
THEOPHYLLINE AS HDAC ACTIVATOR

Theophylline in low therapeutic concentrations:
- activates HDAC
 - via a novel mechanism (not PDE/adenosine antagonist)
- markedly potentiates steroid effects
- reverses steroid resistance

COPD macrophages: nuclear lysates

![Graph showing HDAC activity (AFU/10µg) for B/L and Theo (10^-6 M) with significant increase at Theo (10^-4 M).]

THEOPHYLLINE RESTORES STEROID RESPONSE

Alveolar macrophages: smokers

![Graph showing IL-8 (ng/ml) for Cntrl, LPS, Theo (1µM), Dex (1nM), Theo + Dex, and TSA with significant decrease at Theo + Dex.]

THEOPHYLLINE EFFECT ON ChIP ANALYSIS

Histone acetylation of NF-κB site of IL-8 promoter

![Graph showing histone acetylation at κB site](image)

Marwick J et al: BBRC 2008

EFFECT OF THEOPHYLLINE IN SMOKING MICE

Theophylline 3 mg/kg p.o.

Lung Inflammation

Similar results with inhaled theophylline

Reversed by HDAC inhibitor

No detectable plasma levels (TSA)

![Graph showing lung HDAC activity and inflammation](image)

Fox JC et al: ATS 2007
REVERSAL OF SMOKE-INDUCED INFLAMMATION

Dex+Theo

Cigarette smoke (4%, 30 min)

Drugs

Air

Dex

Theo

Dex+Theo

Days: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

BAL Neutrophils

Theophylline 10mg/kg orally (plasma conc 4.0±0.9mg/L)

To Y et al: AJRCCM 2010

COPD PATIENTS: CORTICOSTEROIDS + THEOPHYLLINE

Fluticasone

F+T combination

Placebo

Theophylline

Plasma theophylline~8mg/L

n=30

Induced sputum

Sputum neutrophils

Sputum neutrophil elastase

HDAC activity

PBMCs

Total HDAC activity (relative light units)

No difference in fluticasone or theophylline alone treatment

Ford P et al: Chest 2010
STEROID RESISTANCE IN SMOKING ASTHMATICS

NON-SMOKING ASTHMA

SMOKING ASTHMA

Inflammatory stimuli

Corticosteroids

Peroxynitrite

Histone acetylation

Cigarette smoke

Oxidative stress

HDAC2

Histone acetylation

Steroid resistance

GM-CSF

IL-8

eotaxin

THEOPHYLLINE + ICS IN SMOKING ASTHMATICS

Serum theophylline 5 mg/l

Change in PEF (L/min)

Duration (days)

Spears M et al: ERJ 2009
HOW DOES THEOPHYLLINE RESTORE HDAC?

U937 cells

Immunoprecipitated PI3K-δ

A549 cells

Intact (IC_{50}=134μM)

H_{2}O_{2} stimulated (IC_{50}=2.1μM)

LY: LY 294002, non-selective PI3K inhibitor

PI3K-δ INHIBITION IN VIVO

A/J Mice

Cigarette smoke (4%, 30 min)

Drugs

IC87114: PI3K-δ inhibitor

LY294002: pan PI3K inhibitor

*** NS

Neutrophils (x10^4 cells/ml)

Air ▶ Smoke IC Dex+IC Dex+LY

Dex

** NS

BÅL
Marwick J et al: AJRCCM 2009

PI3K-δ NULL MICE

![Bar graph showing BAL neutrophils/ml x 10^3](image)

- **Sham**
- **Smoke**
- **Smoke + budesonide**

Steroid-resistant

Steroid-responsive

Steroid-resistant

Wild type (balb/c)
PI3K-δ null
PI3K-γ null

Borisy AA et al: PNAS 2003

UNEXPECTED SYNERGY

![Bar graph showing cells x10^6](image)

- **Brown Norway rats: inhaled ovalbumin challenge**
- **Inhaled administration**

- **B/L**
- **Vehicle**
- **Bud**
- **NT**
- **Bud+NT**

![Combinator](image)
NORTRIPTYLENE AND HDAC REVERSAL

Effect of nortriptylene hydrochloride

<table>
<thead>
<tr>
<th>HDAC activity</th>
<th>U937 cells</th>
<th>PI3K activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>H₂O₂</td>
<td>H₂O₂ + NH (1μM)</td>
</tr>
</tbody>
</table>

PI3Kδ inhibition

- **IC₅₀=0.82μM**
- (No effect on PI3Kα, PI3Kγ)

% Inhibition

- [Nortriptylene (μM)]

PI3Kδ inhibition

- Imminoprecipitated enzyme

REVERSAL OF CORTICOSTEROID RESISTANCE

- Oxidative stress
- Antioxidants
 - Nrf2 activators (sulforaphane)
- THEOPHYLLINE
- Nortriptyline
- PI3Kδ inhibitors
- Akt inhibitors
- HDAC2 activators?
- Macrolides (non-antibiotic)

Reversal of steroid resistance
Macrolides prevent decrease in promoter activity

Relative luminescence

HDAC2 promoter activity

Erythromycin

Non-antibiotic macrolide

HDAC2

Promoter activity

Normoxia

Hypoxia

EM

EM703

Erythromycin

Non-antibiotic macrolide

Epigenetic modification of histones

Phosphorylation

Nitration

Ubiquitination

SUMOylation

Methylation

Inflammatory genes
METHYLATION AND STEROID ACTION

5-aza-dC: 5-aza-2'-deoxycytidine: Methytransferase inhibitor

EFFECT OF STEROID ON HISTONE METHYLATION

TGF-β1 promoter

HMT associates with GR

FP: fluticasone propionate
CONCLUSIONS

- Multiple histone modifications regulated by enzymes involved in regulation of inflammatory genes
 acetylation, methylation, phosphorylation, nitration, ubiquitination, sumoylation
- HDAC2 recruitment mediates antiinfl effects of corticosteroids ↓ due to oxidative/nitrative stress
- HDAC2 activity restored by gene transfer, theophylline reverse corticosteroid resistance in COPD cells
- Theophylline ↑ in HDAC2 mediated by PI3Kδ inhibition
- Histone methylation (H3K9) ↑ by corticosteroids HMT (SUV39H1) recruited by corticosteroids
- New therapeutic approaches targeting epigenetic changes now possible

Lee K et al: J Immunol 2006
ACKNOWLEDGEMENTS

Ian Adcock
Caterina Brindicci
Borja Cosio
Gaetano Caramori
Fan Chung
Louise Donnelly
Paul Ford
Mark Hew
Kaz Ito
Ellen Jazrawi
Masa Kagoshima
Vicki Katsaounou
Vera Keatings
John Marwick
Grace Osoata
Yasuo To
Loukia Tsaprouni
Satoshi Yamamura

Jim Hogg
(UBC, Vancouver)
Mary FitzGerald
(Argenta)
Yasuo Kizawa
(Nihon University)
Neil Thomson
(Glasgow University)

FUNDED BY:
Wellcome Trust
MRC
Asthma UK
GSK
Mitsubishi-Tanabe
Novartis
Pfizer