The Discovery and Optimisation of a Highly Selective Series of TRPV4 Antagonists

Sarah Skerratt, Pfizer Neusentis

Acknowledgements: Gordon McMurray, Wendy Winchester, Paul Brennan, James Mills, Wolfgang Klute, Duncan Armour, Kuen Yeap, Florian Wakenhut, Carolyn Barker, Jayesh Mistry, Karl Gibson, Eileen Blasi, Paul Butler, TCGLS
Talk outline

- Is TRPV4 a therapeutically relevant target?
- Is TRPV4 a safe target?
- The search for selective TRPV4 antagonists: HTS screening campaign
 - Computational methods to remove “frequent hitters” and prioritise compounds for follow up
- Hit to Lead: Optimising a piperidine series
- PF-05214030: Understanding translation
 - in vitro/ex vivo/in vivo characterisation
- Efficacy study data
- CV outcomes
- More emerging human TRPV4 mutation data and a project NO GO decision
- Conclusions
TRPV4: A therapeutically relevant target?

- TRPV4 is a member of the Transient Receptor Potential family of ligand-gated ion channels

- TRPV4 is a non-selective cation channel and is polymodal, i.e. activated by a range of stimuli:
 - Small molecules
 - Temperature (>27°C)
 - Hypotonic solutions
 - Mechanical stimuli

- TRPV4 has a wide expression profile
 - Sensory and motor nerves
 - Bladder urothelium and kidney (widespread)
 - Vascular endothelium and smooth muscle
 - Lungs (epithelia, endothelia and smooth muscle)
 - Macrophages
 - Osteoclasts and osteoblasts
 - Ear (hair cells, stria vascularis, auditory ganglion)
TRPV4: A therapeutically relevant target?

- TRPV4 KO mouse data (literature):
 - KO mice are generally healthy and reproductive
 - Altered urinary function:
 Increased bladder capacity, reduced stretch evoked responses, reduced response to inflammatory agents
 → TRPV4: potential for urology therapeutics?

- Altered pain phenotype against a number of stimuli:
 Painful pressure, acetic acid, thermal, chemical mediators of inflammation (carrageenan, formalin), osmotic pain
 → TRPV4: potential for pain therapeutics?

Confidential and Internal to Pfizer - subject to works council and/or union consultations and other legal requirements.
TRPV4: A therapeutically relevant target?

UROLOGY

TRPV4 – Bladder Expression

Literature data shows TRPV4 is expressed in bladder urothelium. In-house experiments confirm TRPV4 expression in mouse, rat, guinea-pig and human bladder urothelial cells.

TRPV4 expression in WT and KO mouse urothelium

Co-localisation of TRPV4 and uroplakin III in mouse bladder
JPET 2008 326:432-42

TRPV4 expression in human bladder and isolated human urothelial cells (Pfizer)
TRPV4: A therapeutically relevant target?

UROLOGY

- TRPV4 – Role in Bladder Function

TRPV4 KO mice show an increased bladder capacity prior to voiding in conscious cystometry experiments (literature)

Selective TRPV4 agonist (GSK1016790A/PF4674114) causes various contractile effects in rat bladder strips, including increased electrically induced nerve contractions and urothelium dependent agonist induced contractions (Pfizer)

- Conscious cystometry in TRPV4 KO and WT mice (literature)
- Agonist responses in bladder strips during electrically induced nerve contractions (Pfizer)
- Agonist responses in intact and urothelium denuded bladder strips (Pfizer)
Effects of TRPV4 in human bladder urothelium

Conductive response seen in human urothelium with TRPV4 agonist challenge (dose dependant)

Response abolished by antagonism with Ruthenium Red and TRPV4 selective compounds – Functional consequence of this?
TRPV4: A safe target?

- Role in kidney function
TRPV4 expression high within kidney tubules – role in osmoregulation
TRPV4 KO mice show altered osmotic regulation and fluid intake (contradicted in some papers)

- Role in Vascular permeability
Administration of TRPV4 agonist leads to circulatory collapse in rodents → linked to vascular leakage and haemorrhage. Effects not seen when TRPV4 agonist administered to TRPV4 KO’s

- Human TRPV4 Mutation Phentotypes
Gain-of-function mutations in TRPV4 cause autosomal dominant Brachyolmia → short trunk, short limbs, scoliosis of the spine

- Age and noise induced hearing loss in TRPV4 KO’s

- Thermal selection
TRPV4 KO’s prefer 34 °C over 30 °C in preference paradigm
Slight delayed response to tail immersion in water bath
TRPV4 HTS: The search for selective TRPV4 antagonists

- Ruthenium Red only known TRPV4 blocker at the time (unselective pore blocker)

 → Require rapid delivery of selective TRPV4 small molecule tool to increase confidence in the therapeutic potential and safety of the mechanism

- High throughput screening (HTS) initiated on the Pfizer compound file

- TRPV4 calcium flux assay (FLIPR Tetra technology) utilised to meet through put requirements (~3 million compounds)

- Compressed file screening generated a large number of hits (~2.5% of compounds had >40% inhibition of TRPV4 at 10μM)

- Single-well, single-point follow-up confirmed ~11K compounds to be active (>40% inhibition at 10μM) → 14% confirmation rate
TRPV4 HTS: The search for selective TRPV4 antagonists

- Diverse array of compounds look active in the assay

- Lots of actives! Good news? Which to take on to full dose response? All of them???
TRPV4 HTS: The search for selective TRPV4 antagonists

- Calcium flux assays can deliver false positives or ‘frequent hitters’ due to a compound being reactive, autofluorescent, cytotoxic or active at another target in the signal transduction pathway.

- Need a quick and efficient way to triage out the frequent hitters → allow efforts to be focussed on true TRPV4 antagonists.

- Could go through every compound by eye and guess.

-or use a more sophisticated approach?
TRPV4 HTS: Removing the “frequent hitters”

- **Approach 1:** *In vitro* data
 All Pfizer pharmacology data is stored in a searchable database.
 If a compound from 11K set was active (>75% inhibition at 10μM) in >1 (non-TRP) FLIPR assay it was deemed a “frequent hitter” and removed.

- **Approach 2:** *In silico* data
 Built Bayesian activity models for each (non-TRP) FLIPR assay. Compounds scoring highly in >1 model were deemed likely “frequent hitters” and removed.
 - Bayesian model predicts likelihood of activity, not activity itself.
 - Model identifies chemical fingerprints more prevalent in *actives* or in *inactives*.
 - Model adds up all contributions to give a Bayesian score to predict “active or inactive”.

Advantage of *in silico* approach is a compound doesn’t need FLIPR data in a particular assay → evidence of activity of its near neighbours is sufficient to suggest it could be active.

Med. Chem. Commun., 2013, 4, 244-251
TRPV4 HTS: Prioritising compounds for IC50

- Removal of “frequent hitters” and “uglies” (clogP>6, MW>600, reactives etc.) → 6K compds
- Require rapid delivery of TRPV4 small molecule tool → positive filters were applied to prioritise “best” compounds in 6K set for TRPV4 IC50 follow-up
 - >75% TRPV4 inhibition at 10μM

- High local hit rate (proportion of near neighbours that are active)

- High score in TRPV4 Bayesian model built on TRPV4 data

- ~1K compounds selected for IC50 due to their likelihood of being active TRPV4 antagonists

- 1 follow-up round of IC50 screening → 5 X TRPV4 series!

Med. Chem. Commun., 2013, 4, 244-251
Hit to Lead: Optimising the piperidinidine series

- Focus on ↑TRPV4 potency & ↑efficiency (LIPE, LE)
- Need appropriate ADME profile and rat pharmacology

PF-0164813 (HTS hit)
- hTRPV4 IC50 2,200 nM
- LIPE/LE 3.3/0.3

PF-05109794
- hTRPV4 IC50 49nM
- LIPE/LE 4.03/0.37
- rTRPV4 IC50 1,150nM
- HLM/RLM 43/465
- logD >3.7
 - Improved potency and LIPE/LE
 - Removed structural alert
 - Removed metabolically labile S-linker
 - Confirmed rat TRPV4 pharmacology

LIPE = pKi – cLogP (or logD)
LE = 1.3643*pKi/number of heavy atoms

Med. Chem. Commun., 2013, 4, 244-251
Hit to Lead: Optimising the piperidine series

- Focus on \(\uparrow \text{TRPV4 potency} \) & \(\uparrow \) efficiency (LIPE, LE)
- Need appropriate ADME profile and rat pharmacology

\[\text{LIPE} = \text{pKi} - \text{cLogP (or logD)} \]
\[\text{LE} = 1.3643 \times \text{pKi/number of heavy atoms} \]

Chemical Structures

- **PF-0164813** (HTS hit)
 - \(\text{hTRPV4 IC50} 2,200 \text{ nM} \)
 - LIPE/LE 3.3/0.3

- **PF-05109794**
 - \(\text{hTRPV4 IC50} 49 \text{ nM} \)
 - LIPE/LE 4.03/0.37

PF-0164813
- \(\text{rTRPV4 IC50} 1,150 \text{ nM} \)
- \(\text{HLM/RLM} 43/465 \)
- \(\text{logD} > 3.7 \)

PF-05109794
- \(\text{hTRPV4 IC50} 49 \text{ nM} \)
- LIPE/LE 4.03/0.37
- \(\text{rTRPV4 IC50} 1,150 \text{ nM} \)
- \(\text{HLM/RLM} 43/465 \)
- \(\text{logD} > 3.7 \)

References
- Med. Chem. Commun., 2013, 4, 244-251
Hit to Lead: Optimising the piperidine series

- Focus on ↑TRPV4 potency & ↑efficiency (LIPE, LE)
- Need appropriate ADME profile and rat pharmacology

PF-0164813 (HTS hit)
- hTRPV4 IC50 2,200 nM
- LIPE/LE 3.3/0.3

PF-05109794
- hTRPV4 IC50 49nM
- LIPE/LE 4.03/0.37
- rTRPV4 IC50 1,150nM
- HLM/RLM 43/465
- logD >3.7

PF-05207123
- hTRPV4 IC50 21nM
- LIPE/LE 5.25/0.45
- rTRPV4 IC50 106nM
- HLM/RLM 12/113
- logD 2.9

LIPE = pKi – cLogP (or logD)
LE = 1.3643*pKi/number of heavy atoms

Hit to Lead: Optimising the piperidine series

- Focus on ↑TRPV4 potency & ↑efficiency (LIPE, LE)
- Need appropriate ADME profile and rat pharmacology

PF-0164813 (HTS hit)
- hTRPV4 IC50 2,200 nM
- LIPE/LE 3.3/0.3

PF-05109794
- hTRPV4 IC50 49 nM
- LIPE/LE 4.03/0.37
- rTRPV4 IC50 1,150 nM
- HLM/RLM 43/465
- logD >3.7

PF-05207123
- hTRPV4 IC50 21 nM
- LIPE/LE 5.25/0.45
- rTRPV4 IC50 106 nM
- HLM/RLM 12/113
- logD 2.9

PF-05214030
- hTRPV4 IC50 4 nM
- LIPE/LE 4.66/0.44
- rTRPV4 IC50 27 nM
- HLM/RLM <7/87
- logD 3.2

LIPE = pKi – cLogP (or logD)
LE = 1.3643*pKi/number of heavy atoms

Rat Tool
PF-05214030: Additional characterisation

- PF-05214030
- h/r TRPV4 IC50 4/27nM (FLIPR assay)
- TRP selectivity >100 fold
- Wide-ligand profile >100 fold
- Dofetilide/Herg 6.6µM/4.3µM
- Rat PK $T_{1/2}$ 2.2hrs
 - Cl 23 (1/3 LBF)
 - F 73%

- Antagonist potency confirmed in patch clamp
 (IC50 = 8.5nM) & hypotonicity assays (IC50 = 6.7nM)

- Antagonist potency confirmed in tissue:
 - rBladder K_b 40 nM
 - mBladder K_b 16 nM
PF-05214030: Proof of in vivo Pharmacology

- TRPV4 agonist given intravesically caused increased frequency of bladder emptying, increased voiding pressure and reduced bladder capacity in anaesthetised rats during bladder cystometry.

Effect of PF-4674114 on bladder capacity and voiding behaviour during continuous cystometry

![Graph showing effect of PF-4674114 on bladder capacity and voiding behaviour during continuous cystometry.](image-url)
PF-05214030: Proof of in vivo Pharmacology

- TRPV4 agonist given intravesically caused increased frequency of bladder emptying, increased voiding pressure and reduced bladder capacity in anaesthetised rats during bladder cystometry.

- i.v. infusion of PF-5214030 reversed the reduction in bladder capacity caused by intravesical infusion of a TRPV4 agonist (GSK1016790A/ PF-4674114) → **proof of in vivo pharmacology**

Graph:

Effect of i.v. infusion of TRPV4 antagonist PF-5214030 or i.v.vehicle on intravesical PF-4674114-induced reduction in bladder capacity in anaesthetised rats

- **X-axis:** Time (min)
- **Y-axis:** Bladder capacity (% saline control)

- **Legend:**
 - I.v. vehicle n = 4
 - 210 ug/kg/min PF-5214030 i.v. n = 4

- **Key:**
 - * P < 0.05
 - ** P < 0.01

- **Concentrations:**
 - PF-05214030 (free) plasma concentrations
 - PF-05214030 rTRPV4 IC50 27nM
PF-05214030: Efficacy studies

- i.v. infusion of PF-5214030 (~8 x IC50) had no effect on bladder capacity when filling bladder with saline (anaesthetised rat cystometry model)

- No effect in rat bladder distension model

- Subcutaneous PF-5214030 (~8 x IC50) caused significant reduction in total volume voided and volume per void in conscious rats (metabolic cages)

 → suggests a direct effect of the antagonist on kidney function

 → measurement of urine constituents indicated urinary concentration effects
PF-05214030: Efficacy studies

- PF-5213040 caused **no effect** (at 8-10 x IC50) on pain behaviours in either formalin induced flinching or CFA induced hypersensitivity in rats.

Effect of PF-5214030 and Gabapentin on formalin induced flinching in rats

Stats: ANOVA between treatment vs. vehicle (**p<0.01)

Effect of PF-5214030 and Pregabalin on static alldynia (48hrs post CFA injection) in rats

Stats: ANOVA vs. vehicle at each time point in ipsilateral hindpaw (blocked by day)
* P < 0.05, *** P < 0.001

All data are expressed as mean ± SEM (n=8)
PF-05214030: CV studies

- Potential CV liabilities of TRPV4 antagonism investigated with PF-5214030 in conscious, freely moving telemetered rats (cross-over study)

- PF-5214030 caused a small but significant increase in blood pressure (~10X IC50) but no effect on heart rate, body temperature or activity (PD effect correlated with PK)

- Compound or mechanism effect?
PF-05214030: CV studies

- Role of TRPV4 in the CV effect of PF-5214030 further assessed in telemetered wild type and TRPV4 KO mice

- Both KO and wild type mice showed increased blood pressure and tachycardia in response to PF-5214030 – potential off-target effect of PF-5214030 or metabolite of PF-5214030?
More human TRPV4 mutant data: Time to walk away from TRPV4

- More evidence of TRPV4 mutations causing severe abnormalities in humans......

 - **Fetal Akinesia**
 Bone and nervous system impairment
 Complete absence of movement

 - **Familial digital arthropathy-brachydactyly**
 Aggressive osteoarthropathy of the fingers and toes

 - **Charcot-Marie-Tooths Disease type 2C**
 Nervous system disorder leading to progressive weakness and atrophy

 - **Brachyolmia**
 Characterized by a short trunk, scoliosis, and mild short stature

 - **Metatropic Dysplasia**
 Characterized by short extremities, a short trunk with progressive kyphoscoliosis, and craniofacial abnormalities

 - **Scapuloperoneal spinal muscular atrophy**
 Weakness of the scapularis muscle and bone abnormalities

- Failure of PF-05213040 in efficacy studies plus additional hTRPV4 mutation data → stop TRPV4 projects for non-life threatening indications requiring peripheral compound exposure
Conclusions: Part 1

- TRPV4 project required rapid delivery of a TRPV4 antagonist to establish confidence in biological rationale.

- HTS delivered numerous chemical “actives”. The application of computational techniques (including Bayesian modelling) in the triage of TRPV4 HTS data enabled rapid deprioritisation of “frequent hitters” and the prioritisation of likely actives.

- Two rounds of IC50 screening → 5 chemical series → focus on hydroxypiperidines.

- Pairwise analysis in Hit-to-Lead work delivered hydroxyazetidine series.

- Full utilisation of available data facilitated rapid delivery of potent chemical tool → HTS screen to delivery of rat tool (PF-05214030) in < 7 months.

PF-0164813 (HTS hit)
- hTRPV4 IC50 2,200 nM

PF-05214030
- hTRPV4 IC50 4nM
- rTRPV4 IC50 27nM
- Rat PK: Cl (ml/min/kg) 23.5 T1/2 2.2 hr, F% 73
Conclusions: Part 2

- PF-05214030 antagonist potency confirmed in patch clamp, hypotonicity assays and tissue experiments

- In vivo proof of pharmacology (reverses the effects of TRPV4 agonist in bladder)

- **BUT** no effect in any pain or genitourinary efficacy models

- **AND** altered rat micturition profile likely driven from effect on kidney

- PF-5214030 caused a small but significant increase in blood pressure → KO data suggests an off-target cf. on target effect

- Failure of PF-05213040 in efficacy studies plus additional hTRPV4 mutation data → STOP!

- **BUT** we did get to the STOP decision quickly → HTS to STOP in ~9 months. Rapid NO GO decisions as important as GO decisions in Drug Discovery

Thank you for your kind attention