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Many inferences from statistical methods use the assumption that

experimental data form a random sample (using that word in the

statistical, not the chemical or physical, sense) from a population with

a normal (Gaussian) distribution of measurement errors or other

variations. Inmost cases this assumption is not actually tested, so if it is

not valid false deductions may be made from the data. This Technical

Brief considers cases where the normal distribution is generally taken

to be valid, discusses how likely that is to be true, and how it is possible

to test whether a data sample might come from a normally distributed

population.

The normal distribution – background

The normal distribution was described by Abraham de
Moivre in 1733 as an approximation to the binomial distri-
bution for a large number of trials: his motivation was his
enthusiasm for gambling, about which he wrote a treatise!
Later in the 18th century Laplace studied error
distributions, and in 1809 Gauss derived a formula for the
distribution curve analogous to the one used today, hence the
common use of the term Gaussian distribution. Early
applications were in astronomy, perhaps the rst science to
call for highly accurate measurements: Galileo had recog-
nised the importance of measurement errors almost 200 years
earlier. The term normal distribution was used in the late 19th
century, but was popularised by Karl Pearson around
1920, partly because of its common occurrence, but also to
avoid controversy over whether de Moivre, Laplace, Gauss or
other mathematical pioneers should receive the credit for its
discovery. de Moivre and Laplace also gured in the
hemistry 2017
discovery of the central limit theorem, which is closely
related to the normal distribution (see below), for Laplace
the motivation was again the interpretation of astronomical
data.

The main properties of the normal distribution are too well
known to require summarising, but we should identify the
many circumstances in which its occurrence is explicitly or
implicitly assumed. Most obvious are in estimates of con-
dence limits and uncertainties, which use the fact that �68%
of the results in a normally distributed population will lie
within one standard deviation of the mean, �95% within two
standard deviations of the mean, and so on. These charac-
teristics are also routinely used to set up Shewhart-type control
charts. Rather less obvious cases where we assume that data
are normally distributed are in the application of important
signicance tests, including tests for outliers (see TB 69); in
the calculation and use of calibration graphs, including the
conventional denitions and estimation of limits of detection
and quantitation; and in the numerous uses of analysis of
variance. Further areas of relevance include many multivariate
methods, and also cases where measurements can be con-
verted to a normal distribution by transformation, such as the
log-normal data that sometimes arise in clinical data from
different patients. Analytical scientists may thus need reas-
surance that their data samples could come from a population
with normally distributed variations.
The normal assumption—how valid is
it?

Many tests of the validity of the normal distribution have been
performed, oen using large data sets. Generally the data t
the normal distribution quite well, but with some discrep-
ancies near the “tail” values well removed from the mean.
Probably the data used were not always obtained in what we
would nowadays call repeatability conditions. Thus 300
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measurements of the celestial coordinates of a star are
unlikely to have been made by the same observer with the
same instrumentation in the same observing conditions, so
the results were probably formed of two or more
superimposed normal distributions with similar means but
different variances. Gross errors might occasionally arise too,
giving rise to outlier values in the tails of the published
distributions. Analysis of almost 3000 values of the velocity of
light showed that the data were best t by two normal distri-
butions with closely similar means, but very different vari-
ances. Recent studies of the weights of thousands of
pharmaceutical tablets, to test whether they provide satisfac-
tory dose uniformity, also revealed departures from the
normal distribution. For large data sets such departures can
be expressed quantitatively using skewness and/or kurtosis
(“peakedness”) values. However, in the analytical sciences
large data sets are relatively uncommon, so we may need to
establish whether relatively small data samples could be
derived from a normal population distribution. Data with
“heavy tails” and/or outliers in an otherwise roughly normal
distribution are now known to be best treated using robust
statistical methods (TBs No.s 6, 50, 64), but such methods are
not suitable in situations where the data are highly skewed or
multi-modal.
Fig. 1 Histograms of means of random samples from a uniform distri
parameters. The distribution of single values reflects the parent uniform
progressively closer to the normal distribution.
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The central limit theorem (CLT)

This crucial—but perhaps insufficiently well known—statistical
principle provides reassurance for those handling small data
samples. In essence the theorem states that the sampling
distribution of the mean (i.e., the distribution of the means of
a number of samples of the same size taken from a given pop-
ulation) tends towards a normal distribution as the sample size
increases, irrespective of the nature of the population distribution.
This remarkable result can be easily demonstrated using
a spreadsheet calculation, and several web sites offer dynamic
simulations. Fig. 1 shows that the means of even quite small
samples taken from a uniform distribution are distributed
approximately normally. As a result, the condence limits and
uncertainties derived from such means can be reasonably
assumed to have the expected normal distribution properties,
whatever the original population distribution. A corollary, or an
alternative statement, of the CLT is that when a result arises as
the outcome of a number of independent processes, its varia-
tion may be expected to tend towards normality. This is
a further reassurance for analytical scientists, as even very
simple analytical procedures such as titrations can be broken
down into a set of separate processes, each with its own small
independent sources of variation. These assurances are all the
more welcome because, as shown in the example below, it is
bution, each scaled to a normal distribution (red line) with the same
distribution, but the means of n ¼ 2, 4 and 10 individual values are
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Fig. 2 Normal probability plot (Minitab®) for 8 measurements of the quinine level (ppm) in different batches of tonic water.
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impossible to prove or disprove with much conviction that
a data sample is taken from a normal population if the number
of measurements is small.

Significance tests for normality

Despite the assurances provided by the CLT there are many
occasions when it is desirable to test to see whether data sets
might be normally distributed. Important examples include the
testing of residuals found in regression and analysis of variance
(ANOVA) calculations. If the residuals derived from a regression
plot are not randomly and normally distributed, the model used
(e.g., linear, quadratic) is probably inappropriate. In ANOVA the
calculated probability values rely on the assumption that the
random errors reected in the residuals are normally
distributed.

Several established methods for testing for normality are
available in many soware packages. A simple approach is the
use of normal probability paper, in which the individual
measurements are plotted against their cumulative frequen-
cies, the latter being on a non-linear scale derived from the
percentage points of the normal distribution. Normally
distributed data should yield a straight line plot: the Ryan-
Joiner (RJ) test provides a correlation coefficient to evaluate
the linearity. Fig. 2 shows a normal probability plot for a set of
8 measurements: the points lie on a curve, hinting at a depar-
ture from normality, but the RJ correlation coefficient is high
enough to provide a p-value greater than 0.05, so we cannot
reject the hypothesis that the data come from a normal pop-
ulation. The Kolmogorov–Smirnov method (which gives
a similar conclusion for the Fig. 2 data) compares plots of the
cumulative distribution function of the experimental data and
the distribution expected of normal data: if the distance
between the two curves is too great the null hypothesis of
normally distributed data is rejected. Recently the main test
This journal is © The Royal Society of Chemistry 2017
methods used have been the Shapiro–Wilk test (another
correlation-based method) and the Anderson–Darling test, the
latter being a modication of the Kolmogorov–Smirnov
approach with extra weight being given to the tails of the
distribution. Monte Carlo simulations show the Shapiro–Wilk
test to be marginally the most useful for testing for the normal
distribution, having the best power for a given signicance
level. Excel® add-ins to perform it have been produced. The
test statistic, W, is given by:

W ¼

�Xn

i¼1

aixðiÞ

!2

Xn

i¼1

ðxi � xÞ2

In this equation the xi values are the individual measure-
ments, with mean �x, and the x(i) values are the ordered
measurements, with x(1) the smallest, x(2) the next smallest,
and so on. The constants ai are derived from the properties of
the standard normal distribution and can be obtained from
published tables. Small values of W are a sign of departures
from normality, so the null hypothesis is rejected if the test
statistic is less than the tabulated critical value. The Shapiro–
Wilk test has been used with success with quite small data
samples (though it is less effective if the data contain ties, i.e.,
equal measurements): when applied to the data in Fig. 2 it
shows that the probability that they could come from a normal
population is much greater than 0.05. Again it is clear that
when we use only a few measurements any departures from
normality would have to be quite gross before this or other
tests could reject the null hypothesis of a normal distribution.
It is for this reason that the central limit theorem provides
such inestimable comfort!
Anal. Methods, 2017, 9, 5847–5850 | 5849
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Further reading

A clear treatment of methods of testing for the normal distri-
bution is provided in Practical Statistics for Medical Research, D.
G.Altman, Chapman and Hall, 1991.

An example of a Shapiro–Wilk calculation using Excel® is
provided at http://www.real-statistics.com. Downloaded
February 2nd 2017.

James N. Miller

This Technical Brief was prepared for the Statistical Subcom-
mittee and approved by the Analytical Methods Committee on
11/07/17.
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