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rimental design and optimisation (5): an
introduction to optimisation

Analytical Methods Committee AMCTB no. 95
Once a suitable experimental design has been

used to find the most important factors

affecting the outcome of an experiment, and

maybe to find any significant interactions

between them, we can use an optimisation

method to find the best levels (values) for

those factors. This Technical Brief outlines the

basic principles of optimisation, and intro-

duces some of the most commonly used

approaches.
Previous Technical Briefs (numbers 24,
26, 36,1 and 55 2) have shown how it is
possible to identify the factors (i.e.,
experimental variables) that most affect
the result of an analytical experiment.
Even simple experiments are inuenced
by quite large numbers of quantitative
and possibly qualitative factors, so effi-
cient experimental designs are extremely
valuable, and many different methods
have been used. The aim is always to
obtain the maximum information from
the smallest possible number of trial
runs: to minimise the number of trials it
is normal to change the levels (i.e. values)
of several factors between one run and
the next. The simplest experimental
designs may identify only the main
factors: information on any interactions
between them usually requires a larger
number of trial runs. Designs should also
take into account the inevitable random
errors, to determine whether an observed
2–2424
change in the outcome of an experiment
is signicant: analysis of variance
(ANOVA) methods provide this informa-
tion. When we move on to the optimisa-
tion process our aims are similar (and
indeed some optimisation methods
utilise simple factorial designs – see
below). We now wish to nd the best level
for each of a hopefully modest number of
the crucial factors we have identied,
which may inuence the experimental
outcome interactively. Our methods
should be able to handle such interac-
tions without too many trial experiments.
There may be a conict between getting
a truly optimum outcome and minimis-
ing the number of trials to save resources;
in practice it is oen sufficient to get
close to the optimum in relatively few
trials. Again, random errors must be
considered; as we near the optimum,
changes in the experimental response
with different factor levels will oen be
comparable with these errors. This may
be another practical justication for
being content with a small number of
trials and a near-optimum outcome.
Starting an optimisation

A crucial rst step is to identify exactly the
(single) experimental response that we
wish to optimise. Sometimes we shall be
seeking a maximum response – the fast-
est reaction rate, the highest spectro-
scopic emission intensity, and so on.
In other cases, the response of
interest may be more complex – the best
signal : background ratio, for example, or
This jou
the best chromatographic resolution
between two sample components. As
always, a failure to dene our experi-
mental aim exactly is likely to yield
a awed outcome.

To optimise just a single factor we do
not normally need sophisticated
methods. Factors such as wavelength,
spectral bandwidth, or electrode poten-
tial can be altered so readily that their
optimisation is trivial. And automatic
analysis methods can be adapted to
provide gradients in owing liquid
systems so that, for example, the
optimum pH for a reaction can be
established in what is effectively a single
experiment. In the rare cases where one
factor with continuous values cannot be
studied in one experiment, the best
approach is to start with two trials with
different levels of the factor, using the
results to set the factor levels for the third
and subsequent trials, gaining informa-
tion at each step: details are given in
standard texts.3

Optimisation with two (or more)
experimental factors is more complex. In
adjusting a spectroscopic detector for
example the signal to background ratio
may depend on the wavelength and the
spectral bandwidth. These two factors
will probably interact with each other
(i.e., the optimum wavelength may
depend on the bandwidth and vice versa),
so univariate search methods are inap-
propriate. Optimisation methods are
usually illustrated using two-factor
examples because simple pictorial repre-
sentations of the factor space are
rnal is © The Royal Society of Chemistry 2020
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Fig. 1 A contour diagram for a two-factor
response surface.

Fig. 2 The principle of simplex optimisation.

Fig. 3 A contour diagram showing global (G)
and local (L) maxima.
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available. In some cases, a 3-dimensional
response surface or “mountain” picture is
used. Several response surface
approaches to optimisation are available,
but perhaps the most useful method for
displaying the two-factor situation is
a contour diagram (Fig. 1). The contours
join points of equal system response: in
the gure the optimum is shown by the
central point. These graphical displays
cannot very easily be extended to cover
three or more factors, but the optimisa-
tion methods in common use can handle
such situations mathematically.

At the start of the optimisation process
the form of the contours is evidently
unknown, while the aim is to approach
their centre as expeditiously as possible. To
achieve this we have two general options.
We could use a carefully designed set of
experiments to explore the response within
a region of interest, then t some mathe-
matical model of the response, which we
can use to identify a prospective optimum.
This approach is called response surface
modelling (RSM) and will be discussed in
a later Technical Brief. The alternative
approach, sometimes called sequential
optimisation, is to forgo a model and
simply seek an optimum by adjusting the
factor levels using information gained in
successive experiments. This Technical
Brief outlines some of these sequential
methods.

An important property of a contour
diagram is that it represents the degree of
interaction between the two factors. If
there is no such interaction the major
and minor axes of the roughly elliptical
contours would lie parallel to the main
axes of the diagram. Then if Factor X was
held at a constant level while trials were
run with various levels of Factor Y, the
This journal is © The Royal Society of Chemistry
optimum value for the latter would be the
same at all levels of Factor X: the
optimum level for Factor X could simi-
larly be found using any sensible level of
Factor Y. This suggests one possible
approach to the more likely situation
where the factors do interact, the contour
axes then being at an angle to the main
axes, as in Fig. 1. We could start by
keeping Factor X constant and trying
various levels of Factor Y. When we found
the best level for Y at that particular level
of X we could reverse the process, keeping
Y constant at its newly-found level and
searching for the best X level. By
repeating these procedures we would
approach the optimum step-wise. This is
the iterative univariate or alternating
variable search method. It has found
little use in analytical work as it is only
practicable if the system response can be
monitored continuously while the factor
levels (e.g., spectrometer wavelengths and
bandwidths) are changed easily: other-
wise an excessive number of separate
experiments is involved.

Another approach that is simple to
understand is the method of steepest
ascent. We imagine ourselves as standing
on the slope of a mountain in a thick fog,
while aiming to reach its summit, i.e., the
optimum we seek. In real life we would
walk in the direction of the steepest
slope, taking that to be the quickest way
up. So we need information about the
local gradient, i.e., the rate of change of
response as the factor levels change. In
a laboratory experiment we would need
a simple factorial design based around
our starting point to indicate the direc-
tion of steepest ascent. Aer moving in
the indicated direction for a certain
distance, ideally checking the response
until it starts to fall, we can repeat the
factorial design to get fresh information
on the steepest route. But even with just
two factors each factorial design would
require four experiments, so this method
also fails the test of minimising the
number of trials needed.

The most commonly used method in
analytical work when all the factors are
continuous variables is simplex optimi-
sation. A simplex is a geometrical gure
with one vertex more than the number of
factors being studied, so for two factors it
is a triangle. The basis of the method is
2020
shown in Fig. 2. We begin with three trial
experiments with the factor levels given
by the points A, B and C. The form of the
contours is unknown, but the results
show that the worst response is obtained
at point A. We reject this point by
reecting it through the line joining B and
C to give the position for a single new
experiment at point D. There is then
a new simplex BCD, with the worst
response now at C. This response in turn
is rejected by reection through the line
joining B and D, to give another new
point E. Continuing this process takes us
towards the optimum by means of just
one response measurement at each stage,
thereby achieving the desired economy of
effort. But this simple idea raises
a number of questions. How do we decide
on the size and position of the initial
simplex ABC? When we approach the
optimum the rejection-by-reection
process will yield two points alternately,
one on either side of the optimum – how
do we handle that? How do we calculate
the positions of the simplex vertices when
there are three or more factors? And how,
if at all, does the simplex approach deal
with the possibility of subsidiary
Anal. Methods, 2020, 12, 2422–2424 | 2423
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maxima? These issues will be discussed
further in a subsequent Technical Brief.

We have so far assumed that there is
a single optimum response that we can
locate unequivocally, or at least approach
closely. But in some experimental
systems this simplication is not justi-
ed; there may be local maxima as well as
the global maximum (Fig. 3). Such situa-
tions may be more common than is
generally supposed. A search method
should ideally be capable of distinguish-
ing the global response from the lesser
local maxima, preferably with a modest
number of trial experiments: this signi-
cant problem will be discussed in subse-
quent Technical Briefs.
2424 | Anal. Methods, 2020, 12, 2422–2424
Some experiments require the opti-
misation of more than one response
simultaneously. In an HPLC separation
of compounds 1, 2 and 3 we may wish to
optimise the chromatographic resolution
of each of the three pairs 1 and 2, 2 and 3,
and 1 and 3. Even when only a single
factor (e.g., the acetonitrile content of the
mobile phase) might affect the experi-
mental outcome, this type of multiple
optimisation requires new approaches,
again to be discussed in a subsequent
Technical Brief.

James Miller (Loughborough University)
This Technical Brief was written on
behalf of the Statistics Expert Working
This jou
Group and approved by the Analytical
Methods Committee on 25th November
2019.
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