Application of absorption spectroscopy for studying behaviour of actinides in molten salts

Vladimir Volkovich

Department of Rare Metals and Nanomaterials, Ural State Technical University-UPI, Ekaterinburg, Russian Federation
Molten salts have a number of potential applications in nuclear technology:

- producing nuclear fuels (metallic, oxide, nitride)
- reprocessing spent nuclear fuels
- acting as a nuclear fuel (molten salt reactor)
- coolant
Introduction

Fuel production
• electrolytic production of uranium (plutonium) metal
• electrolytic production of uranium dioxide, MOX (including granules for “vipac” method)
• precipitation of PuO₂, nitrides

Spent fuel reprocessing
• various molten salts have been tested (chlorides, sulfates, nitrates, molybdates, tungstates…)
MOX → PuO₂

Chlorination 700 °C

First electrolysis 680 °C

PuO₂ crystallization 680 °C

Second electrolysis 700 °C

Melt purification 700 °C

Cl₂ → MOX → PuO₂

Cl₂ + O₂ + Ar

Na₂CO₃, Na₃PO₄

MOX → MOX

Chlorination 650 °C

First electrolysis 630 °C

Main MOX electrolysis 630 °C

Second electrolysis 630 °C

Melt purification 650 °C
Coolant

- Low melting point (300-500 °C)
- Low vapour pressure (< 1 mm Hg)
- Good thermal physical properties
- Chemical stability
- Acceptable cost

<table>
<thead>
<tr>
<th></th>
<th>Water (PWR)</th>
<th>Na (LMR)</th>
<th>He (HTR)</th>
<th>Salts (MSR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (MPa)</td>
<td>15.5</td>
<td>0.69</td>
<td>7.07</td>
<td>0.69</td>
</tr>
<tr>
<td>Output temperature (°C)</td>
<td>320</td>
<td>540</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Coolant velocity (m/s)</td>
<td>6</td>
<td>6</td>
<td>75</td>
<td>6</td>
</tr>
</tbody>
</table>
Fuel
Acceptable neutron and physical properties
High radiation stability
Good solubility of actinides (U, Pu, Th, MA)
Possibility of reprocessing and recycling
Molten salt reactor

A technology deeply investigated in the 60’s and 70’s

- The successful operation of the MSRE (Molten Salt Reactor Experiment) from 1965 to 1969

 3 fuel types:
 Uranium enriched 30% with ^{235}U
 Pure ^{233}U
 ^{239}Pu

- Fuel salt reprocessing not implemented in MSRE, except the off-gas system

- The detailed design of a 1000 MWe breeder reactor in Th/U cycle, the MSBR (programme stopped in 1976)

 Fuel salt
 71%LiF-16%BeF$_2$-12%ThF$_4$-0.3%UF$_4$
Developing/optimisation of a technological process requires understanding behaviour of fuel components, including actinides.

Spectroscopy offers an attractive tool for studying speciation.

Examples:

• Decomposition of uranyl chloride
• Reaction of uranium dioxide with hydrogen chloride
• Reduction of uranyl chloride by hydrogen
• Reaction of curium(III) with oxide ions
Uranium containing alkali chloride melts can be used
• for producing uranium metal (including powders)
• for producing uranium dioxide (including granules for “vipac” method)
• for reprocessing spent metallic, oxide and nitride fuels
Uranium in chloride melts forms U(III), U(IV), U(V) and U(VI) ions: UCI_6^{3-}, UCI_6^{2-}, $\text{UO}_2\text{Cl}_4^{3-}$ and $\text{UO}_2\text{Cl}_4^{2-}$.

Electronic absorption spectroscopy provides a convenient way of identifying dissolved species.

X-ray absorption spectroscopy allows to probe structure of dissolved species.
For optical spectroscopy and X-ray absorption spectroscopy measurements the melts are held in silica cells.
Experimental set-up for measuring EAS of molten salts

1, light source; 2 and 6, optical fibre cables; 3 and 5, collimating lenses; 4, furnace; 7, spectrometer; 8, ADC converter; 9, PC
Experimental
Experiments with transuranic elements were performed in a negative pressure box (RIAR)

\[\text{Cl}_2 \text{ absorption, samples loading} \]
Experimental

Optical furnace attached to a bottom of the box
X-ray absorption spectra of molten and quenched samples (U LIII-edge) were measured at Stations 9.3 (in transmission) and 16.5 (in fluorescence) of the CLRC Daresbury Radiation Source.
Behaviour of U(V) and U(VI)

\[\text{UO}_2\text{Cl}_4^{2-} + \text{Cl}^- \xrightleftharpoons{} \text{UO}_2\text{Cl}_4^{3-} + \frac{1}{2} \text{Cl}_2 \]

\[\text{UO}_2\text{Cl}_4^{2-} \xrightleftharpoons{} \text{UO}_2 + \text{Cl}_2 + 2 \text{Cl}^- \]

\[\text{UO}_2\text{Cl}_4^{3-} \xrightleftharpoons{} \text{UO}_2 + \frac{1}{2} \text{Cl}_2 + 3 \text{Cl}^- \]
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

At elevated temperatures $\text{UO}_2\text{Cl}_4^{2-}$ decomposes forming Cl_2 and U_3O_8 [1]
$\text{UO}_2\text{Cl}_4^{3-}$ (below 750 °C) [2]
UO_2 and UCI_6^{2-} (above 750 °C) [2]
UO_2 and $\text{UO}_2\text{Cl}_4^{3-}$ (by reaction between UO_2 and $\text{UO}_2\text{Cl}_4^{2-}$) [3, 4]
U_3O_8 and UCI_6^{2-} [5]

Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

According to the literature the following reactions are possible:

$$\text{UO}_2\text{Cl}_4^{2-} \rightarrow \text{UO}_2 + \text{Cl}_2 + 2 \text{Cl}^-$$

$$\text{UO}_2\text{Cl}_4^{2-} + \text{Cl}^- \rightarrow \text{UO}_2\text{Cl}_4^{3-} + \frac{1}{2} \text{Cl}_2$$

$$4 \text{UO}_2\text{Cl}_4^{2-} \rightarrow \text{U}_3\text{O}_8 + \text{UCl}_6^{2-} + 6 \text{Cl}^- + 2 \text{Cl}_2$$
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

- NaCl-2CsCl melt, 750°C, 173 min
- NaCl-KCl melt, 750°C, 240 min
- NaCl-2CsCl melt, 850°C, 40 min
- NaCl-KCl melt, 850°C, 206 min
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

IR spectra of quenched NaCl-KCl based melts containing UO_2Cl_2 before and after heating under vacuum.
<table>
<thead>
<tr>
<th>Melt</th>
<th>T, °C</th>
<th>Time held under vacuum, min</th>
<th>U conc., wt.%</th>
<th>Final U oxidation state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>initial</td>
<td>final</td>
</tr>
<tr>
<td>3LiCl-2KCl</td>
<td>550</td>
<td>340</td>
<td>0.76</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>265</td>
<td>0.90</td>
<td>0.67</td>
</tr>
<tr>
<td>NaCl-KCl</td>
<td>750</td>
<td>240</td>
<td>0.96</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>206</td>
<td>0.86</td>
<td>0.79</td>
</tr>
<tr>
<td>NaCl-2CsCl</td>
<td>650</td>
<td>92</td>
<td>0.29</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>150</td>
<td>1.15</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>173</td>
<td>1.13</td>
<td>1.59*</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>40</td>
<td>1.18</td>
<td>2.00*</td>
</tr>
</tbody>
</table>

* Volume of the melt was reduced due to solvent-salt sublimation.
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

Thermodynamic analysis

$\text{UO}_2\text{Cl}_4^{3-} = \text{UO}_2 + \frac{1}{2}\text{Cl}_2 + 3 \text{Cl}^-$

$\text{UO}_2\text{Cl}_4^{2-} = \text{UO}_2 + \text{Cl}_2 + 2 \text{Cl}^-$

$\text{UO}_2\text{Cl}_4^{2-} + \text{Cl}^- = \text{UO}_2\text{Cl}_4^{3-} + \frac{1}{2}\text{Cl}_2$

$3\text{LiCl-2KCl based melt, 700 } ^\circ\text{C, total U concentration – 0.005 m.f.}, p_{\text{Cl}_2} = 10^{-7} \text{ atm.}$
Equilibrium partial pressure of Cl₂ above alkali chloride melts containing UO₂Cl₄²⁻, UO₂Cl₄³⁻ and UO₂ is below 10⁻⁵ mm Hg.

To facilitate Cl₂ removal from the atmosphere:

• melt was sparged with argon

• Zr getter was positioned above the melt.

\[
\begin{align*}
\text{Zr + Cl}_2 & \rightarrow \text{ZrCl}_2 \quad (\text{at } 750 \, ^\circ\text{C} \quad K = 3 \cdot 10^{14}) \\
\text{Zr + 2 Cl}_2 & \rightarrow \text{ZrCl}_4 \quad (\text{at } 750 \, ^\circ\text{C} \quad K = 7 \cdot 10^{34})
\end{align*}
\]
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

Bubbling pure Ar gas through NaCl-2CsCl-UO$_2$Cl$_2$ melt resulted in sweeping forming Cl$_2$ from the atmosphere and assisted conversion of UO$_2$Cl$_4^{2-}$ into UO$_2$Cl$_4^{3-}$.

Presence of O$_2$/air impurities leads to the formation of insoluble alkali metal uranates.
Spectra recorded with Zr turnings positioned in the atmosphere above U(VI) containing melt (NaCl-2CsCl, 650 °C). Concentration of U(V) increased over time (time interval between recording initial and final spectra – 244 min).

Oxidation state of uranium in the final melt – 5.83.

\[\text{UO}_2\text{Cl}_4^{2-} + \text{Cl}^- \rightarrow \text{UO}_2\text{Cl}_4^{3-} + \frac{1}{2} \text{Cl}_2 \]

Zr reacts with Cl\(_2\) facilitating the decomposition of uranyl(VI) chloride.
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

Increasing U(V) concentration during reduction of U(VI) using Zr getter

550 °C

3LiCl-2KCl

750 °C

NaCl-KCl

NaCl-2CsCl

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
absorbance at 780 nm

0 100 200 300 400 500
time / min

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
absorbance at 780 nm

0 100 200 300 400 500
time / min
Thermal decomposition of $\text{UO}_2\text{Cl}_4^{2-}$

Reduction of $\text{UO}_2\text{Cl}_4^{2-}$ using Zr getter above the melt

<table>
<thead>
<tr>
<th>Melt</th>
<th>T, °C</th>
<th>Time, min</th>
<th>U conc., wt.%</th>
<th>Fraction of U remaining in melt, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>initial</td>
<td>final</td>
</tr>
<tr>
<td>3LiCl-2KCl</td>
<td>550</td>
<td>180</td>
<td>0.77</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>380</td>
<td>0.74</td>
<td>0.23</td>
</tr>
<tr>
<td>NaCl-KCl</td>
<td>750</td>
<td>336</td>
<td>0.78</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>410</td>
<td>0.81</td>
<td>0.34</td>
</tr>
<tr>
<td>NaCl-2CsCl</td>
<td>550</td>
<td>123</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>218</td>
<td>0.79</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>235</td>
<td>0.92</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>170</td>
<td>0.65</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Oxidation of uranium dioxide

Reaction of UO₂ with Cl₂ → UO₂Cl₄²⁻:

\[\text{UO}_2 + \text{Cl}_2 + 2 \text{Cl}^- \rightarrow \text{UO}_2\text{Cl}_4^{2-} \]

Reaction of UO₂ with HCl normally gives UCl₆²⁻:

\[\text{UO}_2 + 4 \text{HCl} + 2 \text{Cl}^- \rightarrow \text{UCl}_6^{2-} + 2 \text{H}_2\text{O} \]
Reaction of UO$_2$ with HCl

Spectra recorded in the course of reacting UO$_2$ with HCl

- NaCl-KCl melt, 700 °C
- NaCl-2CsCl melt, 600 °C
Reaction of UO$_2$ with HCl

Spectra recorded in the course of reacting UO$_2$ with HCl

LiCl melt, 750 °C
Reaction of UO₂ with HCl

Structural parameters from EXAFS spectra curve fitting of chloride melt samples prepared by reacting UO₂ with HCl

<table>
<thead>
<tr>
<th>Sample</th>
<th>Shell</th>
<th>CN</th>
<th>Distance, Å</th>
<th>Debye-Waller factor, 2σ², Å²</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO₂+HCl in LiCl, 750 °C (4.88 wt.% U)</td>
<td>U-O</td>
<td>2</td>
<td>1.80</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>U-Cl</td>
<td>4</td>
<td>2.71</td>
<td>0.046</td>
</tr>
<tr>
<td>As above, quenched melt</td>
<td>U-O</td>
<td>2</td>
<td>1.76</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>U-Cl</td>
<td>4</td>
<td>2.76</td>
<td>0.024</td>
</tr>
<tr>
<td>UO₂+HCl in 3LiCl-2KCl, 450 °C (0.72 wt.% U)</td>
<td>U-Cl</td>
<td>6</td>
<td>2.44</td>
<td>0.028</td>
</tr>
<tr>
<td>As above, quenched melt</td>
<td>U-Cl</td>
<td>6</td>
<td>2.61</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Reaction of UO$_2$ with HCl

EAS recorded upon reacting UO$_2$ with HCl in 3LiCl-2KCl melt at 450 °C (bottom) and 600 °C (top)
EAS recorded during reaction of UO_2 with HCl in 3LiCl-2KCl melt at 750 °C. Total time of HCl bubbling 160 min.
Possible reactions

\[\text{UO}_2 + 4 \text{ HCl} \rightarrow \text{UCl}_4 + 2 \text{ H}_2\text{O} \]
\[2 \text{ UO}_2 + 2 \text{ HCl} \rightarrow 2 \text{ UO}_2\text{Cl} + \text{H}_2 \]

In a chloride melt the reaction products dissolve forming \(\text{UCl}_6^{2-} \) and \(\text{UO}_2\text{Cl}_4^{3-} \), respectively:

\[\text{UO}_2 + 4 \text{ HCl} + 2 \text{ Cl}^- \rightarrow \text{UCl}_6^{2-} + 2 \text{ H}_2\text{O} \]
\[2 \text{ UO}_2 + 2 \text{ HCl} + 6 \text{ Cl}^- \rightarrow 2 \text{ UO}_2\text{Cl}_4^{3-} + \text{H}_2 \]
Thermodynamic analysis

For gaseous species

$$\Delta G_{(\text{gas})} = \Delta G^0_{(\text{gas})} + R \cdot T \cdot \ln(p),$$

and

$$\Delta G_{(\text{melt})} = \Delta G^0_{(l)} + R \cdot T \cdot \ln(N) + \Delta G_{(\text{mix})},$$

p is the partial pressure of the gaseous species in the atmosphere above the melt and N is that gaseous species molar fraction in the melt.

$p(HCl) \sim 1 \text{ atm.}$, if the system is close to equilibrium then $\Delta G_{(\text{melt})} \approx \Delta G_{(\text{gas})}$

For uranium chlorides

$$\Delta G_{(\text{melt})} = \Delta G^0_{(l)} + R \cdot T \cdot \ln(N) + \Delta G_{(\text{mix})},$$

$$\Delta G_{(\text{mix})} = \Delta G^* - \Delta G^0_{(l)},$$

(Gibbs free energy of the formation of a uranium chloride in the melt - standard Gibbs free energy of the formation of pure liquid uranium chloride)

$$\Delta G_{(\text{melt})} = \Delta G^* + R \cdot T \cdot \ln(N)$$

ΔG^* of UCl_6^{2-} and $\text{UO}_2\text{Cl}_4^{3-}$ can be calculated from known values of the electrode potentials for $\text{U}^{\text{III}}/\text{U}^{0}$, $\text{U}^{\text{IV}}/\text{U}^{\text{III}}$ and $\text{UO}_2^{V}/\text{UO}_2$ red-ox couples measured versus Cl_2/Cl^- reference electrode.

The order of $p(\text{H}_2\text{O})$ and $p(\text{H}_2)$ was estimated from known volumes of the experimental cells, rate of HCl flow through the system and amounts of H_2O and H_2 formed.
Reaction of UO$_2$ with HCl

Calculated values of change of Gibbs free energy ΔG of reactions of UO$_2$ with HCl leading to the formation of UO$_2$Cl$_4$$^{3-}$ (1) and UCl$_6$$^{2-}$ (2) in:

A, melts of various cationic compositions at 750 °C, r(M$^+$) is average radius of alkali cation in the melt;

B, 3LiCl-2KCl melt at various temperatures.

\[p(\text{H}_2\text{O}) = p(\text{H}_2) = 2 \times 10^{-4} \text{ atm}, \ [\text{U}] = 1 \text{ mol.\%}. \]
Reaction of UO$_2$ with HCl

<table>
<thead>
<tr>
<th>Melt</th>
<th>m(UO$_2$)/m(salt)</th>
<th>T, °C</th>
<th>Time, min</th>
<th>Final U conc., wt.%</th>
<th>n_U^{ox} in the final melt</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCl</td>
<td>0.17</td>
<td>750</td>
<td>261</td>
<td>4.88</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>750</td>
<td>180</td>
<td>0.65</td>
<td>5.09</td>
</tr>
<tr>
<td>3LiCl-2KCl</td>
<td>0.01</td>
<td>450</td>
<td>90</td>
<td>0.38</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>600</td>
<td>60</td>
<td>1.84</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>750</td>
<td>160</td>
<td>1.06</td>
<td>4.75</td>
</tr>
<tr>
<td>NaCl-KCl</td>
<td>0.08</td>
<td>700</td>
<td>259</td>
<td>2.50</td>
<td>4.02</td>
</tr>
<tr>
<td>NaCl-2CsCl</td>
<td>0.07</td>
<td>600</td>
<td>162</td>
<td>0.90</td>
<td>3.98</td>
</tr>
</tbody>
</table>
Chemical reduction of $\text{UO}_2\text{Cl}_4^{2-}$

Reaction of UO_2Cl_2 with hydrogen

Reprocessing oxide nuclear fuels using alkali chloride melts and hydrogen

$$\text{UO}_2 + \text{Cl}_2 + 2 \text{Cl}^- \rightarrow \text{UO}_2\text{Cl}_4^{2-}$$

$$\text{UO}_2\text{Cl}_4^{2-} + \text{H}_2 \rightarrow \text{UO}_2 + 2 \text{HCl} + 2 \text{Cl}^-$$

Chemical reduction of $\text{UO}_2\text{Cl}_4^{2-}$

Reaction of $\text{UO}_2\text{Cl}_4^{2-}$ with H_2 in NaCl-2CsCl at 750 °C

![Absorbance spectra](image)
Chemical reduction of $\text{UO}_2\text{Cl}_4^{2-}$

Variation of U(V) concentration during reduction of $\text{UO}_2\text{Cl}_4^{2-}$ by H_2
Chemical reduction of $\text{UO}_2\text{Cl}_4^{2-}$

Reaction of $\text{UO}_2\text{Cl}_4^{2-}$ containing melts with hydrogen

<table>
<thead>
<tr>
<th>Melt</th>
<th>T, °C</th>
<th>U(VI) initial conc., wt.%</th>
<th>Time, min</th>
<th>U final conc., wt.%</th>
<th>Fraction of U remaining in the melt, %</th>
<th>U oxidation state</th>
<th>Time of reaching max. U(V) conc., min</th>
</tr>
</thead>
<tbody>
<tr>
<td>3LiCl-2KCl</td>
<td>550</td>
<td>0.71</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>0.42</td>
<td>56</td>
<td>0.014</td>
<td>3</td>
<td>5.62</td>
<td>7</td>
</tr>
<tr>
<td>NaCl-KCl</td>
<td>550</td>
<td>0.76</td>
<td>23</td>
<td>0.62</td>
<td>82</td>
<td>5.41</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>0.83</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>0.74</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>0.71</td>
<td>86</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>5</td>
</tr>
</tbody>
</table>

$\text{UO}_2\text{Cl}_4^{2-} + \frac{1}{2} \text{H}_2 + \text{Cl}^- \rightarrow \text{UO}_2\text{Cl}_4^{3-} + \text{HCl}$ \hspace{1cm} (1)

$\text{UO}_2\text{Cl}_4^{3-} + \frac{1}{2} \text{H}_2 \rightarrow \text{UO}_2 + \text{HCl} + 3 \text{Cl}^-$ \hspace{1cm} (2)

in NaCl-2CsCl at total [U]~0.7 wt.% $\Delta G_{(1)} = \Delta G_{(2)}$ at n$_U$~5.67 (550 °C) or n$_u$~5.45 (750 °C) – around half of U(VI) can be reduced to U(V).
Chemical reduction of $\text{UO}_2\text{Cl}_4^{2-}$

Reaction of $\text{UO}_2\text{Cl}_4^{2-}$ with H_2 in NaCl-2CsCl at 750 °C

3 $\text{UO}_2\text{Cl}_4^{3-} + \text{H}_2 \rightarrow \text{UOCl}_5^{2-} + 2 \text{UO}_2 + \text{H}_2\text{O} + 7 \text{Cl}^-$
2 $\text{UO}_2\text{Cl}_4^{2-} + \text{H}_2 + \text{Cl}^- \rightarrow \text{UOCl}_5^{2-} + \text{UO}_2\text{Cl}_4^{3-} + \text{H}_2\text{O}$

In chloride melts Cm is present in the form of Cm(III) ions.

$$3\text{LiCl}-2\text{KCl}, \ 550 \degree\text{C}$$

0.0177 mol/kg Cm

$$\text{Cm(III)} + 3\bar{e} \leftrightarrow \text{Cm(0)}$$

WE – W

$$\nu = 0.5 \text{ V/s}$$

RE – Ag\(^+\)/Ag

$$n = 3$$
Behaviour of curium in chloride melts

Cm\(^{3+}\) (similar to lanthanides) reacts with oxide ions to form oxychloride (soluble ?) and oxide:

\[
\begin{align*}
\text{Cm}^{3+} + \text{O}^{2-} + \text{Cl}^- & \rightarrow \text{CmOCl} \\
2 \text{Cm}^{3+} + 3 \text{O}^{2-} & \rightarrow \text{Cm}_2\text{O}_3
\end{align*}
\]
Behaviour of curium in chloride melts

Electronic absorption spectra of Cm(III)

NaCl-2CsCl
(550, 650, 750 °C)
Behaviour of curium in chloride melts

Addition of O^{2-} ions into chloride melts

Dissolution of oxides – Na$_2$O, BaO

Bubbling Cl$_2$-O$_2$ mixtures

$$\frac{1}{2}O_2^{(g)} + 2Cl^- \leftrightarrow O^{2-} + Cl_2^{(g)}$$

Bubbling HCl-H$_2$O mixtures

$$2H_2O + 4Cl^- \leftrightarrow O^{2-} + 4HCl^{(g)}$$
Behaviour of curium in chloride melts

Reaction of Cm(III) with H₂O

NaCl-2CsCl, 550 °C

\[\log\left(\frac{p_{2\text{HCl}}}{p_{\text{H}_2\text{O}}}\right) \]

-1.4
-2.1
-2.9
-3.6
-4.3
-5.0
-5.7
Behaviour of curium in chloride melts

Electronic absorption spectra of Cm species

NaCl-2CsCl, 550 °C

$\log(p^2_{HCl}/p_{H_2O}) = -10$

$\log(p^2_{HCl}/p_{H_2O}) = -1.4$

CmO^+ ?
The peak around 358 nm appears:
- after bubbling HCl-H₂O mixtures with high p(H₂O)
- after bubbling Cl₂-O₂ mixtures with high p(O₂)
- after dissolving BaO

The peak remains after bubbling Cl₂ through the melt:
\[\text{CmO}^+ + \text{Cl}_2 \rightarrow X \]

The peak disappears after bubbling Cl₂ through the melt in the presence of C (graphite):
\[2 \text{CmO}^+ + 2 \text{Cl}_2 + \text{C} \rightarrow 2 \text{Cm}^{3+} + \text{CO}_2 + 4 \text{Cl}^- \]
Behaviour of curium in chloride melts

Cm in NaCl-2CsCl melt, 550 °C

![Graph showing the behavior of curium in NaCl-2CsCl melt at 550 °C. The graph plots the Cm fraction against the logarithm of the ratio of p_{HCl}/p_{H_2O}. Two curves are shown: one for Cm^{3+} and another for CmO^{+}. The Cm fraction decreases as the logarithm of the ratio increases.]
Behaviour of curium in chloride melts

Cm in 3LiCl-2KCl melt, 450 °C

- Cm\(^{3+}\)
- CmO\(^{+}\)
- Cm\(_2\)O\(_3\)

Cm fraction vs. \(\log(p_{\text{HCl}}^2/p_{\text{H}_2\text{O}})\)
Conclusion

• Absorption spectroscopy techniques (i.e., electronic and X-ray) offer a convenient tool for \textit{in situ} studying behaviour of actinides in high temperature melts and can answer many questions some of which otherwise would never have been asked…
Acknowledgements

Prof. B.D. Vasin, Dr I.B. Polovov, Mr D.E. Alexandrov,
Mr T.K. Khabibullin, Mr D.S. Maltsev (USTU-UPI, Russia)

Mr A.G. Osipenko, Mr A.A. Mayorshin (RIAR, Dimitrovgrad, Russia)

Dr T.R. Griffiths (University of Leeds, Redston Trevor Consulting Ltd.)

Prof. F.R. Livens, Dr I. May, Dr A.I. Bhatt, Dr C.A. Sharrad
(CRR, Manchester, UK)

Dr J.M. Charnock, Dr I. Harvey, Mr R. Bilsborrow (Daresbury
Laboratory)

Mr M. Jennings (the University of Manchester)

Centre for Radiochemistry Research, Manchester , UK
EPSRC/CCLRC for the provision of synchrotron radiation facilities
British Nuclear Fuels plc (Nexia Solutions), UK
INTAS (YS Grant No. 03-55-1453 for IBP)
Ministry of Education and Science of Russia
Research Institute of Atomic Reactors, Dimitrovgrad, Russia