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A glimpse into Bayesian statistics 
 
Many analytical chemists find the logic of hypothesis tests and 
confidence intervals hard to follow.  What looks like a probability 
statement about a true concentration is in fact an assertion about 
random intervals, involving data we did not observe but might 
have.  There is another way.  Bayesian statistics allows, indeed 
insists on, probabilities for hypotheses.    
 
An example 
Consider the simple example of analysing a material to test it against a 
specification.  Suppose there is an upper limit cL = 10 units for an 
acceptable concentration of an impurity in the material, and by 
analysis we obtain a single measurement cm = 10.7 of the 
concentration in this particular sample.  The analytical method is 
unbiased and has known precision (standard deviation) 0.4 units.  Thus 
the variance of the measurement is vm = 0.42 = 0.16.  What is the 
strength of the evidence that the true concentration θ in this sample 
exceeds the allowable limit? 
 
A standard statistical treatment 
This argues as follows.  If the true value θ = 10, then the measurement 
is drawn from a normal distribution with mean 10 and standard 
deviation 0.4.  The probability that such a measurement is 10.7 or 
greater is the same as the probability that an observation from the 
standard normal distribution exceeds (10.7 − 10)/0.4 = 1.75, which is 
0.04 from tables.  If θ < 10, this probability will be even smaller.  The 
small probability for the observed (or more extreme) data under the 
hypothesis θ ≤ 10 is taken as evidence against the hypothesis.  Either 
we quote 0.04 as a p-value measuring the strength of this evidence or, 
noting that 0.04 is less than the magic 0.05, announce that the 
hypothesis has been rejected at the 5% level. All this should seem 
fairly familiar.  What may also be familiar is the common practice of 
interpreting the p-value as though it is the probability that the 
hypothesis is true.  It is not.  It is the probability of observing 
particular data given that the hypothesis is true.  If we want to attach 
probabilities to hypotheses then we have to work in a Bayesian 
framework.  
 
A Bayesian analysis 
The Bayesian approach requires us to quantify our beliefs about the 
true value θ in the form of a probability distribution.  These beliefs 
will change when we see the result of the measurement, and the main 
tool in Bayesian statistics is the recipe  
 

posterior ∝ likelihood × prior 
   
for updating beliefs in the light of new evidence.  The workings of this 
formula are most easily followed in the case when θ may only take 
one of a finite set of values, θ1, θ2, . . ., θk, and ‘prior’ attaches a 
probability to each θi.  This prior distribution expresses our beliefs 
about θ before observing the data.  The likelihood, which also has a 
value for each θi, is the probability of observing the data given θ = θi.  
Multiplying the prior probability and the likelihood for each θi and 
then scaling so that the resulting numbers add to one over the k values 
of θ gives us a new set of probabilities, the posterior distribution, 
which expresses our updated beliefs about θ.  When, as in our 

example, it is more natural to think of θ as continuous rather than 
discrete, prior and posterior beliefs are represented by probability 
density functions (pdfs), and the likelihood becomes a continuous 
function of θ, but the idea is essentially the same.  
 
Sometimes the updating has to be done numerically, just as described 
above, possibly after discretising a continuous distribution.  
Sometimes, if the prior distribution and likelihood have compatible 
mathematical forms, it can be done algebraically.   
 
Suppose that in our example our prior beliefs about θ may be 
described by a normal distribution with mean mp and variance vp.  This 
combines with the normal likelihood to give a normal posterior 
distribution with mean 
 
m = (vm

-1 + vp
-1)-1(vm

-1cm + vp
-1mp) ,  

 
a linear combination of the prior mean mp and the measurement cm 
with weights inversely proportional to the respective variances, and 
variance 
 
v = (vm

-1 + vp
-1)-1 . 

 
An ‘informative prior’ distribution 
To get any further we need to specify the values of mp and vp, the prior 
mean and variance.  If the sample of material under test comes from a 
manufacturing process that we have experience of, we may be able to 
use this experience to specify, for example, a prior mean of mp = 6 and 
variance of vp = 4.  The corresponding distribution is shown in Figure 
1, where it is the one cantered on 6 and spreading across the whole 
range.   
 

 
 
What we are saying here is that before taking account of the 
measurement we are prepared to regard the material under test as a 
randomly chosen sample from a process that produces material with an 
average impurity concentration of 6 units and a spread such that about 
2.5% of the material will exceed the allowable limit of 10 units. 
 
Plugging these numbers and the values cm = 10.7, vm = 0.16 into the 
formulae above gives us a mean of 
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m = (0.16-1 + 4-1)-1(0.16-1×10.7 + 4-1×6)  
    = (6.25 + 0.25)-1(6.25×10.7 + 0.25× 6)  
    = 10.52 
 
and a variance of  
 
v = (0.16-1 + 4-1)-1 = 0.154 , 
 
which corresponds to a standard deviation of  0.392.  Both the 
likelihood and the posterior distribution are shown in Figure 1.    
 
They are the two sharp peaks on the right, with the likelihood the 
furthest right, and the posterior shifted slightly to the left, because of 
the effect of the prior. 
 
The posterior distribution for θ, normal with mean 10.52 and standard 
deviation 0.392, can be used to make probability statements about θ.  
For example, the probability that θ < 10 is equal to the probability that 
a standard normal is less than (10 − 10.52)/0.392 = −1.33, which is 
0.09 from tables.  This is a little greater than the p-value of 0.04, 
because we have taken into account the extra evidence that material 
failing the specification is relatively unusual, but more importantly it is 
qualitatively different.  It is a probability statement about θ, not a 
probability statement about the data asking to be mistaken for one 
about θ. 
 
A ‘reference prior’ distribution 
In some, though not all, situations it is possible to reproduce the same 
numerical results as in the standard analysis, whilst still keeping the 
Bayesian interpretation. If in the example we let the prior variance vp 
become very large, the posterior mean will approach cm and the 
posterior variance will approach vm.  In Figure 1, the pdf of the prior 
distribution becomes more and more spread, until it is effectively flat, 
and the likelihood and posterior distributions coincide.  Then the 
posterior distribution of θ is normal with mean cm and variance 0.16, 
and for cm = 10.7 the probability that θ < 10 is 0.04, the same as the 
standard p-value.  To get this posterior distribution in a formal way we 
may take the prior distribution as uniform over all values of θ.  It is 
hard to imagine any real case in which we believe that all values of θ 
are equally likely, and a uniform distribution over an infinite range 
cannot be normalised to integrate to 1, so this is a mathematical 
convenience rather than a proper expression of belief.   However the 
resulting posterior distribution is commonly taken as the appropriate 
one for ‘vague prior beliefs’. 
 
Opportunities 
In this example and in many others, the Bayesian approach has two 
advantages.  It provides a formal and coherent way to take account of 
the other information that will often be available, and it provides 
probabilities for hypotheses in a straightforward way.  The second 
aspect is particularly important if the purpose of the analysis is to 
inform a decision, e.g. to accept or reject a batch of material.  The 
Bayesian approach extends naturally to a theory for optimal decision 
making1 in which the probability distributions for uncertain quantities 
are combined with costs for outcomes.     
 
Problems 
The role of the prior is open to criticism.  Two analysts with different 
prior distributions may reach different conclusions from the same data.  
This is logical: they are basing their inferences on different 

information.  However it can give rise to argument in legal or 
regulatory contexts.  Whose prior distribution is appropriate, that of 
the analyst or the regulator?  One can, of course, use both. 
 
Further reading 
There is at present no book on Bayesian Statistics for the Analytical 
Chemist and there are relatively few analytical applications in the 
literature.  There is a book on archaeological applications that has a 
little chemistry in it,2 and at least one book on forensic applications.3  
There are general introductory texts, of which the book by Berry4 is 
one of the most accessible and that by Lee5 a little more mathematical.  
The more adventurous might like to try O’Hagan’s First Bayes 
software.6     
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and the analytical community in general. The aim of the AMC is “to 
participate in national and international efforts to establish a 
comprehensive framework for appropriate quality in chemical 
measurement”. It achieves this aim through the activities of its expert 
subcommittees, which handle: 
• the development, revision and promulgation of validated, 

standardised and official methods of analysis; 
• the development and establishment of suitable performance criteria 

for methods and instruments; 
• the use and development of appropriate statistical methods; 
• the identification and promulgation of best analytical practice, 

including aspects relating to sampling, equipment, instrumentation 
and materials; 

• the generation of validated compositional data of natural products 
for interpretative purposes. 
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quality in analytical data.  
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