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ABSTRACT 

On-chip artificial Darwinian selection technology using a microarray was developed as one of the most 

promising approaches to efficiently obtaining the genetic codes of superior proteins from a large number of mutant 

libraries. A first-generation mutant GFP (green fluorescent protein) library in which random mutation was introduced 

to a chromophore region was translated on a chip. Subsequently, a second-generation protein chip arraying only the 

brightest GFPs was successfully obtained using the Darwinian selection technology. This selection technology is 

expected to become an essential tool for directed molecular evolution. 
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INTRODUCTION 

In the field of high-speed protein molecular evolution technology, the high-throughput selection of genetic 

codes of mutants is a challenging issue, and an integrated microarray chip with directed evolution is one of the most 

efficient approaches to achieving the evolution of superior proteins [1]. We have been developing an ultra large scale 

(1.44×10
8
 wells/chip) microwell array chip as a platform to enable the screening and one-step synthesis of mutant 

proteins [2]. In this paper, we report a simple and robust technology for selecting superior genetic codes from a 

mutant protein library on a microarray chip. 

 

EXPERIMENT 

A schematic of the selection technology is shown in Fig. 1. Each molecule of a random mutant GFP-DNA was 

amplified and immobilized onto a 2.8 m diameter magnetic bead using the BEAMing method that was applied to 

emulsion PCR [3]. Subsequently a DNA microarray chip (6.9×10
5
 beads/cm

2
) arraying random mutant DNAs was 

fabricated using our developed automatic magnetic bead arrangement system, which enables an array of 

DNA-immobilized beads to be formed in a PDMS microwell (4.0 m diameter and height) with the assistance of an 

external dynamic magnetic force. A cell-free translation reagent was poured onto the DNA microarray chip. 

Subsequently, the entire surface of the chip was covered with a synthetic oil to isolate each microwell. After 

incubation, translated random mutant GFPs on the chip were observed under a confocal microscope at 488 nm 

excitation, and the mutant DNAs indexed to the brightest GFPs were recovered selectively. Finally, the recovered 

mutant DNAs were amplified. 
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Figure 1 Schematic of artificial Darwinian selection technology. a) Mutant DNA microarray chip. b) 

Pouring a cell-free translation reagent onto the microarray array chip. c) Isolation of all wells with thin oil 

layer. d) Cell-free translation from mutant DNAs to GFPs. e) Recovery of the beads immobilizing mutant 

DNA including genetic codes with brightest mutant GFPs. f) Amplification of the recovered mutant DNAs. 
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RESULTS AND DISCUTION 

As shown in Fig. 2, the mutant GFPs introduced random mutation into threonine at position 65 in the 

chromophore region of wild-type GFP. On the other hand, the cell-free translation reagent was perfectly dispensed 

into all the wells only by flowing of a thin oil layer (See Fig. 3 for the simulation result). Hence, as shown in Figs. 

4(a) and (b), the DNA microarray chip was converted into a protein array chip with various fluorescence intensities. 

The synthesis of mutant GFPs was also confirmed by SDS-PAGE (Fig. 4(c)). 

 

 

Figure 2 Schematic of a position of introduced random mutation to wild-type GFP. a) A position of random 

mutation (threonine65X (Thr
65

X)) introduced into amino-acid sequence of the GFP. b) Position of random 

mutation (NNN) introduced into DNA sequence of the GFP. 
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Figure 3 Volume of fluid (VOF) 

simulation for the isolation of all PDMS 

microwells sinply by the flow of a thin 

oil layer. 

Figure 4 a) Fluorescence microscopy image of a mutant DNA 

microarray chip. Cy5-labeled DNA-immobilized beads were 

arrayed on the microwell array chip with high density. b) 

Fluorescence microscopy image of first-generation GFPs with 

various fluorescence intensities on the microarray chip. c) 

SDS-PAGE analysis of the mutant GFPs. 
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Five of mutant-DNA-immobilized beads indexed to the brightest GFPs (Fig. 5(a)) were successfully recovered 

using a glass manipulator with 4 m diameter (Fig. 5(b)). Subsequently, the recovered DNAs were amplified using 

PCR (Fig. 5(c)). The amplified mutant DNAs were again subjected to emulsion PCR, DNA microarray chip 

fabrication, and on-chip cell-free translation; then, the mutant GFPs on the chip that exhibited the brightest uniform 

fluorescence were observed (Fig. 6). Consequently, first-generation mutant GFPs with various fluorescence 

intensities were successfully shifted to second-generation brightest mutant GFPs (Fig. 7). 
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Figure 5 Recovery and amplification of genetic codes of the brightest GFPs on a chip. a) Fluorescence 

microscopy image of screening of the brightest GFPs. b) Bright-field image of recovered the 

mutant-DNA-immobilized beads. c) PAGE analysis of an amplified mutant DNA recovered from (b). 
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Figure 6 Fluorescence microscopy image of 

second-generation mutant GFPs. 
Figure 7 Progression of artificial Darwinian selection 

from first-generation to second-generation mutants. 
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