MICROFLUIDIC DEVICES FOR OCEAN SCIENCE AND EXPOLORATION

Tatsuhiro Fukuba¹, Christophe Provin², Katsuo Mogi³, Haruyuki Kinoshita², Kei Okamura⁴, Masanori Kyo¹, Teruo Fujii²

¹Japan Agency for Marine-Earth Science and Technology, Japan, ²Institute of Industrial Science, The Univ. of Tokyo, Japan, School of Engineering, The Univ. of Tokyo ⁴Center for Advanced Marine Core Research, Kochi Univ. Japan

ABSTRACT

Microfluidic devices have been applied to realize functionally integrated and compact *in situ* chemical and biochemical analyzers that can be operated in deep-sea environments. PDMS-based microfluidic devices are connected with miniature pumps, valves, and flow-rate sensors to enable *in situ* detection of biomolecules or trace elements. The *in situ* analyzers can be mounted on a variety of underwater platforms such as remotely operated vehicles, autonomous underwater vehicles, and manned submersibles. Development, evaluation, and *in situ* operation processes of the *in situ* analyzers will be introduced together with practical operation results.

KEYWORDS

Marine survey, in situ measurements, Gene, ATP, Manganese, pH

INTRODUCTION

For the purpose of ocean sciences, natural resource surveys, and environmental assessment missions, development of compact *in situ* chemical/biochemical sensors or analyzers has been demanded. A series of Integrated *In Situ* Analyzer (IISA) utilizes a microfluidic device as a core functional element for chemical or biochemical analysis in ocean environments. IISA-Gene can detect targeted microbial genes based on a PCR method [1]. Microbial biomass can be estimated using IISA-ATP (adenosine triphosphate) that can perform a luciferin-liciferase bioluminescence assay *in situ* [2]. IISA-Mn can quantitatively detect manganese (Mn) ion as one of the trace metal contents of seawater using a luminol chemiluminescent assay [3]. A microfluidic device was also integrated with an ion-sensitive field-effect transistor (ISFET) to realize *in situ* calibration of a pH sensor (IISA-pH) [4]. All of IISA apparatuses have been operated *in situ* for system evaluations and practical operations.

EXPERIMENT

IISA-Mn equipped with a microfluidic device that has four microvalves, a flow-rate regulator, a mixer, and an optical detection flow-cell was operated in the deep-sea environment for practical survey of underwater hydrothermal sites. IISA-Mn was mounted on a remotely operated vehicle (ROV) "HYPER-DOLPHIN" (JAMSTEC). As a result of survey missions at the depth of 500 to 700 m at the Okinawa Trough area, distinct anomalies on manganese concentration were detected and novel hydrothermal sites were successfully discovered.

A PDMS microfluidic device with a PMMA flow-manifold for manganese detection (left), fluidic components of IISA-Mn (center), and ROV "HYPER-DOLPHIN" with IISA-Mn (right)

REFERENCES

- [1] T. Fukuba, A. Miyaji, T. Okamoto, T. Yamamoto, S. Kaneda and T. Fujii, *Integrated in situ genetic analyzer for microbiology in extreme environments*, RSC Adv. 1, pp. 1567-1573, (2011)
- [2] T. Fukuba, Y. Aoki, N. Fukuzawa, T. Yamamoto, M. Kyo and T. Fujii, *A microfluidic in situ analyzer for ATP quantification in ocean environments*, Lab Chip, 11, pp. 3508-3515, (2011)
- [3] C. Provin, T. Fukuba, K. Okamura, and T. Fujii, An integrated microfluidic system for manganese anomaly detection based on chemiluminescence: description and practical use to discover hydrothermal plumes near the Okinawa Trough. IEEE J. Ocean Eng., DOI:10.1109/JOE.2012.2208849 (2012)
- [4] T. Fukuba, Y. Tamai, M. Kyo, K. Shitashima, Y. Koike, and T. Fujii, Development and Field Evaluation of ISFET pH Sensor Integrated with Self-Calibration Device for Deep-Sea Oceanography Applications, Proc. μTAS 2008, San Diego, USA, pp. 1983-1985, (2008)

CONTACT

* Tatsuhiro Fukuba +81-4-6867-9374 or bafuk@jamstec.go.jp