A STUDY OF LIQUID DYNAMIC RUPTURE IN MICROFLUIDICS
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ABSTRACT

This paper demonstrates the dynamic stressingisobus liquids in microfluidic channels. An infeal laser
pulse is focused within the testing liquid in a roituidic channel and a spherical shock wave neariiterface is
created. The shock is reflected by the free surdlaeeto acoustic impedance mismatch. The displaceaiehe free
surface in hundred nanoseconds is captured byelajmd double-exposure optical system. The tesgiémgth can
be estimated by using a series of results froneudifit distances between the bubble and the fré@csufThis study
has a great potential in the optical breakdowniofmaterials.
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INTRODUCTION

The tensile strength of liquids has been investididor hundreds of years since the pioneer worBarthelot
[1-5]. It is affected by many physical propertigsliquids and one of them is shear viscosity. Salvstudies have
been conducted to investigate the relation betvileenensile strengtiiSand the shear viscosity[6-9]. All results
can be expressed &§- ", but the value of the exponemis 0.2 in Ref [6] and 0.1 in Ref [7-8]. Howevengtuse
of a large volume of liquids introduces heterogerseoucleation, which causes a remarkable decrddbe tensile
strength. Recently, a dynamic stressing methodslygua microfluidic platform has been developed dredrupture
of water has been observed with very strong tensdees [10]. The decreased volume of the liquid trel
nanosecond dynamic process significantly increttseprobability of the homogenous nucleation. lis haper, a
double-exposure technique is developed to investige dynamic rupture of viscous liquids in mitwafic
channels. The tensile strengths of four glyceralewaolutions with different viscosities are measur

WORKING PRINCIPLE

A technique to estimate the tensile strength afidlg is illustrated in Fig 1. An IR laser pulseasused into the
testing liquid in a microfluidic channel and a skeeave is formed due to the optical breakdown. 3eck wave is
reflected by the free surface since the acoustjgedtance mismatch between the testing liquid andDaiuble
exposure picture photograph is used to capturelef@mation of the free surface. In one-dimensia@mallysis, the
shock wave velocity propagatesRgU. Hence, the water detaches the free surface mitéi velocity of 2P)pU.
The contribution of the reflected negative shockevies TSpU. Therefore, the initial velocity, of the deformed
free surface is expressed as [9]

Vo = (2/pU)(P = TS/2) @)

whereP is the maximum pressure of the laser pulsis the negative pressure induced by the reflestedk wave,
p is the density of the water, and is the velocity of shock wave. Using the doublgasure technique, the
deformed free surface can be observed two timess(ihid and dash lines) and the valu&/gfor different distances
under the same laser pulse energy can be calcuByeextrapolating to zero velocity,S= 2P, the tensile strength
of the testing liquid can be estimated.
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Figure 1: lllustration of liquid in microchael
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Figure 2: Schematic of experimental setup
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Figure 3: Double-exposure images of dynamic stngssf water under a distance of (a) 113.4 um apd b pm.

The double-exposure experimental setup is showrFiqy 2. The testing liquid is partially filled in a
polydimethylsiloxane microchannel with a height8af um and a width of 400 um. An Nd:YAG laser creaiagle
laser pulses at 1064 nm (infrared/IR, 7 ns duratidri.40 + 0.05 mJ energy and 532 nm (green, @unation). The
IR pulse is focused within the testing liquids (40¥A = 0.8). The green pulse as the illuminatiaghtiis split into
two beams by a 50:50 beam splitter and the timaydeétween the two beams can be controlled by twijuthe
length difference of the two optical fibers. DI watnd glycerol are measured and the dynamic vtsepare 1.005
and 1250 mPa, respectively.

RESULTS AND DISCUSSIONS

Figure 3 shows two images of the dynamic streseingrater. As shown in the images, the bright sgothie
emission of the plasma and two spherical bubblésvedt, andt, are captured simultaneously in a single image.
andt, are controlled by the length of optical fiber (BDand 50 m in this paper) and the time interval 36
nanoseconds in this case. The shock front is tefieby the free surface due to the acoustic impeglamnismatch
between water and air. The dash arc shows thectefleshock at;. The free surface is deformed by the shock
loading. The distance between the bubble and e durface is 113.4 um and 71.5 um, respectivalyiify. 3(a)
and (b). With larger distance, the deformed distandhe same time interval is smaller.

To determine the pressure distribution with thecghohe bubble dynamics in liquid droplet is fiygsdxamined.
A water /glycerol droplet on a glass slide is uasdhe testing medium. The time evolutions of thkhbe radius in
DI water and glycerol droplets are plotted in Fg(a). The error bars show the standard deviatfogixodistinct
experimental results. The radii increase with timeboth fluids. But the radii of bubble in glycerdroplets are
always smaller than that in DI water droplets & slhme time. This is due to the fact that the gisg@lamps the
bubble growth. The evolution of the shock front @ahd bubble wall in water is plotted in Fig. 4(fhe shock
dynamics is simulated by solving the multicomponEnder equations (2D with azimuthal symmetry) ahe t
thermodynamic state is governed by Tait equatiostatie along an isentrope. The initial bubble ra@ul2 um and
the initial bubble pressure is 6 GPa. The simutaind experimental results agree very well withheather as
shown in Fig. 4(b).

The pressure distribution for different time poiafter optical breakdown is plotted in Fig. 5(a)aafunction of
the distancex between the bubble and the shock front. The peedspre decays at a ratexdf* in the simulated
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Figure 4: (a) Bubble radius in DI water and glyd¢ehmplets as a function of time. (b) Simulatiordaxperimental

results of shock front and bubble wall in water.
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Figure 5 (a) The simulated pressure distributiod®, 24, 36, 48, 60 and 72 ns after the opticahkdewn. (b)
Measured free-surface deformation velocity as atfan of the distance between the bubble and fuelace.

range (from 80 pum to 300 um). The presdia any distance can be estimated by using the simplified equation
P =75 x10%125 2

wherer is the distance in micrometer.

The results of the free surface deformation veyoag a function of the distance between the bubbteer and
the free surface are plotted on a “log-log” scaieFig. 5(b). The error bars show the standard devieof six
distinct experimental results. Extrapolations te theasurement accuracy, 6.37 and 6.37 m/sVfer 0), give the
values of 4137.3 um and 511.3 um for DI water agdegol, respectively. This predicts the tensilesgth of DI
water and glycerol are 34.8 MPa and 61.7 MPa, atisedy. This means that the tensile strength iases with the
increase of the viscosity.

CONCLUSIONS

In conclusion, the dynamic rupture of viscous ldgpuiis investigated by using a microfluidic platfor
double-exposure optical system is developed toucajghe deformation of the free surface. The presdistribution
is obtained by numerical simulation. The tensilersgth can be estimated based on the displacerhaht dree
surface and the pressure distribution. Two liquidiswater and glycerol, are tested. The tensilergth of glycerol
is larger than that of DI water. These clearly msggghat the viscosity has a huge effect on théleubucleation.
This study has a great potential in the opticahkdewn of biomaterials.
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