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structure is formed [8]. For this reason, the photo-generated electrons and holes would flow to different directions 
due to the difference of potential levels. This would significantly reduce the recombination of the electrons and holes 
and would thus enhance the photocatalytic efficiency. 

 
Fabrication and characterization of the compound photocatalyst film 

Following the same method in our previous research [4, 5], the nanoporous TiO2 film was prepared by the sol-gel 
method. It included two stages: the preparation of the TiO2 colloid and the creation of porous TiO2 film on the glass 
slide. On the first stage, 10% wt. TiO2 powders (Degussa P25) were slowly dispersed in 120 ml water containing 
acetylacetone, Triton X-100, PEG20000 to form the TiO2 colloid. On the second stage, the painting method was used 
to form a porous TiO2 film onto a glass slide, which was subsequently annealed at 500 °C for 2h. In the next step, a 
thin film of bismuth vanadate (BiVO4) was grown on the porous TiO2 film by the pulse laser deposition (PLD) 
method. The deposition was carried out in the oxygen atmospehere of 200 mtorr at 500 °C with pulse energy about 
300 mJ focused on a BiVO4 ceramic target (10 mm in diameter). The compound film was also characterized by XRD, 
SEM and UV-vis absorbance spectrum. 
 
Device fabrication and efficiency test 

Standard UV lithography was used to fabricate the master mold for the microreactor. First, negative photoresist 
SU-8 50 was spin coated at 1500 rpm for 60 s onto a silicon wafer substrate and was then baked. Reaction chamber 
and inlet/outlet were then patterned with a mask. As a result, the SU-8 master was obtained. After cleaning it, a 
prepolymer solution of PDMS in a 10:1 mixture ratio was poured on the SU-8 master and cured at 80 °C for 1 h. 
Finally, the cured PMDS slab was peeled off and was ready for bonding with the glass substrate. 

The photo of the fabricated microreactor is shown in Fig. 2(a), the overall footprint is 3 cm  2.5 cm (not 
including the full lengths of the tubes and the wires). Two steel tubes are used as the inlet and outlet. For easy 
visualization, the tree-branch microchannels and the reaction chamber are filled with green dye solution.  

 

 
Figure 2: (a) Photograph of the microreactor; (b) scanning electron micrograph of the compound BiVO4/TiO2 

film; and (c) XRD of the BiVO4 deposited by PLD, showing the monoclinic phase. 

 
RESULTS AND DISCUSSION 
Characterization of the compound film 

Fig. 2(b) shows the SEM image of the compound film. The TiO2 layer is 3 m thick and the BiVO4 layer is 40 
nm thick. The porous structure of the TiO2 is well preserved as the PLD-deposition of 40-nm BiVO4. Fig. 2(c) shows 
the XRD diffraction patterns of the PLD-deposited BiVO4 film. The peaks match well with the monoclinic phase. 

 
Photocatalytic efficiency of the device 

In the experiment, photocatalytic reactions were conducted using a Xe lamp. Methylene blue solution (3  10-5 M) 
was used as the model chemical and was driven by a syringe pump. The degraded MB solutions were collected from 
the outlet and analyzed by a UV-visible spectrophotometer. 

In the microreactor system, the flow rate is one of the major factors that affect the photocatalytic reaction 
efficiency. The flow rate is related to the effective residence time of the MB solution in the reaction chamber by the 
relationship Flow ratelumeChamber vo time residence Effective  . To investigate the effect of the flow rate, the 

solutions were pumped at 75, 100, 150, 300 µl/min, respectively. The corresponding effective residence time (i.e., 
the reaction time) is 8, 6, 4 and 2 s, respectively. The solar light density was tested to be 100 mW/cm2. For control 
experiments, microreactors without any catalyst film, with only the porous TiO2 film and with only a porous (not 
dense) BiVO4 film were tested under the same conditions. The results are plotted in Fig. 3 (a). It can be seen that the 
MB solution is scarcely degraded in the microreactor with no photocatalyst film. In the microreactor with the porous 
TiO2 film, the degradation increases obviously with the effective residence time. And in the microreactor with the 
porous BiVO4 film (1.5 m thick), the degradation rate is similar. In contrast, the microreactor using the BiVO4/TiO2 
film is much faster. The reaction rate constant (represented by the slope of the fitted straight line) is about 2 times of 
those obtained using the porous TiO2 film and the porous BiVO4 film. Here we choose the 3-m porous BiVO4 film 
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