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ABSTRACT 

Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBC) from other blood compo-
nents based on the non-inertial lift effect. We exploit this purely viscous, repulsive cell-wall interaction at low Reynolds 
numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid which closely follows 
theoretical prediction by Olla [1].  We demonstrate the separation of RBCs, blood platelets, solid microspheres, and cir-
culating MV3-melanoma cells and study the influence of the flow rate on the separation.  The method can be used for 
passive, continuous and label-free cell classification in on-chip blood analysis.   
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INTRODUCTION 

An important task for microfluidic examination of blood is continuous and label-free cell classification and sorting.  
Multiple methods are available and summarized in several reviews [2-4]. We demonstrate a simple microfluidic device 
for the separation of soft objects by size and deformability using the non-inertial hydrodynamic lift effect.  The non-
inertial lift is a purely viscous effect in low velocity flow fields. The process is passive, continuous and label-free and 
operates at gentle shear forces.  We find our experiments to be in excellent agreement with theoretical prediction [1].   

 
THEORY 

The non-inertial lift provides the general background for the analysis of our experiments.  At low Reynolds number 
Re, this cell-wall interaction is the dominant hydrodynamic effect to induce cross-streamline migration of deformable ob-
jects in shear flow [5;6].  In the regime of low Re, also called the Stokes regime [7] the flow field is laminar and reversi-
ble in time.  There exist several possibilities to break this highly symmetric condition such as the deformation of soft ob-
jects due to flow stresses, shear flow in the vicinity of a wall, Poiseuille flow or interactions between the suspended 
objects [7-9].  The break of the symmetry results in a cross-streamline migration of the objects which is generally di-
rected away from the wall and, in Poiseuille flow, directed towards the centerline of the flow field [7;8;10].  For RBCs in 
blood flow, this migration is known as the Fåhræus-Lindqvist effect [11], leading to a reduction of the apparent viscosity 
[9] and to the margination phenomenon for leukocytes and blood platelets[12].   

The non-inertial lift has been examined from a theoretical point of view by several groups [1;7;10].  One expression 
for the lateral lift velocity vl(z) derived by Olla [1] yields: 

2
21

3 ),,()(
)(

z

rrURz
zvl

 



 (1) 

Here, the lift velocity depends on the shear rate ߛሶ , the effective radius of the object R = (a1a2a3)
1/3, with the elliptical 

semi-axes of the object, a1, a2 and a3 and the distance z between the center of mass of the object and the wall for z ≫ R.  
For smaller distances to the wall (z ≈ R) other descriptions of the lift velocity have to be taken into account (3; 13). The 
quantity U(λ, r1,r2) is a dimensionless drift velocity that depends on the viscosity contrast λ = ηin / ηout of the internal and 
external fluid and the geometry of the object described by r1 = a1/a3 and r2 = a2/a3.  For spherical particles, U (λ, r1,r2) = 
0 and the non-inertial lift vanishes.  For a fixed shape, U (λ, r1,r2) decreases with increasing viscosity ratio λ [1].  This 
prediction has been shown to be in qualitative agreement with experiments and theoretical results for deformable lipid 
vesicles in microgravity [14] and for RBCs and blood platelets in Poiseuille flow [15].  To compare our experimental re-
sults for RBCs, blood platelets and microspheres with the theoretical prediction we use the object properties summarized 
in [15] and numerically calculate the adopted height at the end of the channel with the downstream velocity defined by a 
simplified Poiseuille-flow profile.   

 
EXPERIMENTAL 

We prepare a PBS-dextran (MW: 400 kDa – 500 kDa, Sigma Aldrich Inc.) solutions of 5% w/w with a viscosity of 
ηout = 7mPas and a density ρ7mPas = 1.03 g/cm3 for the experiments.  For the sheath flow the pure PBS-dextran solution is 
drawn into a Hamilton gastight syringe.  To prepare the sample solutions, blood is drawn from healthy voluntary donors 
and anticoagulated with ethylenediaminetetraacetic acid (EDTA).  We wash the blood three times in isoosmotic 
phosphate buffered saline (PBS) of pH = 7.4 and partly withdraw blood plasma and RBCs after each centrifugation step.  
The solution then contains a two to three times higher concentration of blood platelets compared to whole blood and the 
hematocrit is Hct ≈ 1%.  We further dilute the sample 1:10 with the PBS-dextran mixture to a final hematocrit of Hct ≈ 
0.1% and transfer it into another Hamilton gastight syringe.  For the experiments on the separation of RBCs and 
melanoma cells, we wash the blood three times and completely remove blood plasma and the buffy coat.  The solid 
microspheres we use are polystyrene beads with a diameter of 3 µm (Polybeads, Polysciences Inc.).  We use MV3-
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