AN INTEGRATED MICROFLUIDIC SYSTEM FOR SCREENING OF APTAMERS SPECIFIC TO COLON CANCER CELLS AND STEM CELLS
BY UTILIZING ON-CHIP CELL-SELEX

Lien-Yu Hung¹, Chih-Hung Wang¹, Yu-Jui Che¹, Chien-Yu Fu², Hwan-You Chang² and
Gwo-Bin Lee¹,3,4*

¹Department of Power Mechanical Engineering, ²Institute of Molecular Medicine, ³Institute
of Biomedical Engineering, ⁴Institute of NanoEngineering and Microsystems, National Tsing
Hua University, Hsinchu, Taiwan

ABSTRACT
Colon cancer is the most frequently diagnosed cancer, taking about 700,000 lives every year. In stage
I, colon cancer shows the five-year survival rate higher than 90%. However, after medical therapy, there
are still a group of cancer stem cells (CSCs, less than 0.1 %) hard to treat. But there are no specific
biomarker only presented to recognize colon-CSCs. In this study, a new microfluidic system was
demonstrated to be able to select high-affinity aptamers specific to colon-CSC and colon cancer cells by
performing an automated on-chip Cell-SELEX process.

KEYWORDS: Colon cancer stem cell, Microfluidic, SELEX, Aptamer

INTRODUCTION
Traditional methods for colon cancer diagnosis are majorly invasive methods such as proctoscopy,
flexible sigmoidoscopy, colofibroscopy et al, but these scope-based methods can make patients
discomfort and bowel preparation needed [1]. After diagnosis and proper medical therapy, there are still
very few cancer stem cells (CSCs, less than 0.1 %) hard to treat, which are a tiny group of cancer cells
having the ability of self-renewal, multiple lineages development, and extensively proliferation, may play
an important role for cancer relapse [2]. In order to detect and isolate colon-CSCs, CD44 has been used as
biomarkers of colon-CSC. However, CD44 is not specific enough and also presents in other types of
CSCs [3]. This study therefore presents a new integrated microfluidic system for continuous selection of
aptamers specific to the colon-CSC and colon cancer using a cell-based systematic evolution of ligands
exponential enrichment (Cell-SELEX) process.

Figure 1: Illustration of the CSC Cell-SELEX process.
EXPERIMENTAL

The working process of CSC Cell-SELEX is schematically shown in Figure 1 while the colon-CSCs and colon cancer cell line (HCT-8) were used for specific aptamers screening. Briefly, single-stranded DNA (ssDNA) library was incubated with target cells for positive selection (Fig. 1(a-1)). After washing, ssDNA-target cell complex were thermally lysed to release ssDNA (Fig. 1(a-2)). Released ssDNA was further incubated with control cells for negative selection (Fig. 1(a-3)). Then incubation supernatant was collected to amplify ssDNA by using polymerase chain reaction (PCR) process (Fig. 1(a-4)). These amplified ssDNA were used for next round of Cell-SELEX screening (Fig. 1(a-5)) and the legends indicating the different symbols were shown in Figure 1(b).

An integrated microfluidic chip was designed to perform the entire process of CSC cell-SELEX automatically and showed in Figure 2, containing with one sample transportation unit, two reagent loading chambers (for the washing buffer and the binding buffer), normally-closed microvalves, two target cell chambers, two control cell chambers, two PCR reaction chambers, and two serpentine-shape micropumps (S-shape micropump).

![Figure 2: The integrated microfluidic system equipped with multiple micro-elements, four open-chamber micromixers and two serpentine-shape micropumps.](image)

RESULTS AND DISCUSSION

Enrichment cultured colon-CSCs and HCT-8 cells were used as target cells and control cells. As shown in Figures 3, anti-CD44 fluorescence immuno-staining analysis with CR-CSCs after enrichment

![Figure 3: CD44 fluorescence antibody analysis with (a) colon cancer cells (HCT-8) and (b) colon cancer stem cells (colon-CSCs) after enrichment suspension culture.](image)
suspension culture and HCT-8. These fluorescence images of HCT-8 and CR-CSC were indicated that only CR-CSCs presented red fluorescence signal significantly, indicating that these cells expressed abundant CD44 proteins and had properties of CSCs.

After five rounds of on-chip screening, the flow cytometric analysis was applied to confirm the screening results. Furthermore, one aptamer has the ability to specific recognize colon-CSC was selected, as Figure 4(a) shown, binding analysis by green fluorescence modified aptamers with colon CSCs. Figure 4(b) show that dissociation constant \(K_d\) analysis of CSC-35 aptamer and the \(K_d\) value was measured to be \(44.8 \pm 10.2\) nM, which is comparable to antibody.

CONCLUSION

In this study, a new microfluidic system was demonstrated to be able to select high-affinity aptamers specific to CR-CSCs and HCT-8 cell line by performing an automated on-chip Cell-SELEX process. anti-CD44 antibody was firstly applied to confirm the characterization of suspension cultured CR-CSCs. One CR-CSC-specific aptamer was successfully selected, showing high affinities towards CR-CSC with \(K_d\) of 44.8 nM, which is comparable to antibodies. This developed technique may be promising for screening of biomarker for these cancer cells, which could be useful for early diagnosis of CR-CSC/CRC or even target therapeutics. In the future, it may be applied in personalized medicine for aptamer screening or drug discovery.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science Council in Taiwan for financially supporting (NSC 102-2221-E-007-054-MY3). Partial financial support from the “Towards A World-class University Project” is also greatly appreciated.

REFERENCES

CONTACT

Dr. Gwo-Bin Lee, Tel: + 886-3-5715131-33765; E-mail: gwobin@pme.nthu.edu.tw