
 amc technical brief 
Editor: Michael Thompson      Analytical Methods Committee      AMCTB No 23     March 2006 

 
Mixture models for describing multimodal data 
 
 
An essential precept of statistics is that we always look at 
a graphical presentation of our data before calculating 
summary statistics or drawing any inference. Sometimes 
the inference is blazingly obvious without statistics. 
Sometimes, however, we see immediately that the data are 
inconsistent with the model, the assumptions such as the 
normal distribution that underlie the inference we wish to 
draw. In such cases we have to make alternative 
assumptions and use different, often more complicated, 
statistical methods. A common occurrence of the type 
arises when the dataset is (or appears to be) multimodal 
(Figures 1, 2). To handle that, we can often use mixture 
models to provide a useful summary of the data. 
 
Multimodal datasets can arise when results from two or more 
different processes are combined. For example, results 
obtained by participants in a proficiency test when two or 
more inconsistent analytical methods are in use (Figure 1), or 
when objects from two different sources are analysed (Figure 
2). When there is additional information defining such 
grouping, or the results are completely resolved into groups, 
we can treat the data subsets separately. When there is no 
such information or resolution, it’s often worth considering 
the use of mixture models. 
 
Mixture models simply assume that the dataset is a mixture, 
in unknown proportions, of results from two or more 
different unknown populations. We don’t have to assume that 
the populations are normal distributions, but that assumption 
is usually plausible and useful. The computing task is then 
finding estimates of the means and standard deviations of the 
component distributions and the proportion in which they are 
present. A very efficient way to do that is to use the ‘EM 
algorithm’, which employs maximum likelihood estimation. 
An example is shown in Figure 3. This method is easy to 
encode and quick to run (see the brief introduction overleaf). 
But you don’t need to know the details to do it - just use the 
AMC software! 
 
Useful reading 
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Figure 1. Results from a proficiency test for the determination of 
total sugars in condensed milk, showing the data (+) and a kernel 
density representation (line). 

 
Figure 2. Concentration of aluminium in 40 flint artefacts from 
Southern England, showing data (+) and a kernel density 
representation (line). 

 
Figure 3.  The flint data (+) from Figure 2 interpreted as a mixture 
(solid line) of two normally distributed components (dashed lines). 
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Maximum likelihood 
Maximum likelihood is an estimation method that is more general than least 
squares. However, it often needs an iterative procedure to obtain the results. 
For data assumed independent and randomly drawn from a model 

defined by parameters , the likelihood is defined by 
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We usually work with the log likelihood, )(log)(log ∑= i ixfL θθ . The 

parameter estimates  are those that maximise . For a normal 

distribution we have 
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where the parameters are simply the mean θ µ  and the variance . In that 
instance maximum likelihood gives the same outcome as the familiar least 
squares. 
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How the EM algorithm works 
The EM (Expectation Maximisation) algorithm executes maximum likelihood 
estimation for mixture models. It is described here for a two-component 
normal mixture, where we want to estimate 222111 ,,and,,, pp σµσµ , 

for two components with proportions . Consider the data 
illustrated in Figure 4.  
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We start with initial guesses of the parameters 21 ˆ,ˆ µµ . In practice visual 
estimates are usually satisfactory, so we take the values at the modes, namely 
14 and 18. Then we take the midpoint of the two means (16) to dichotomise 
the data. In terms of probabilities, we are saying that, as a first guess, data  
falling below 16 belong to the first (lower) component with a probability 

 . Those falling above 16 belong to the first component with a 

probability . We attribute complementary probabilities to the second 
component. These probabilities are shown in Figure 5.  
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Then the maximum likelihood estimates for components 2,1=j  are: 

∑ ∑ −=

∑∑=

∑=

j i jiji

i jii jiij

i jij

nPx

PPx

nPp

/))((ˆ

ˆ

ˆ

22 µσ

µ  

These are simply the formulae for means and a (pooled) variance, but with the 
data weighted by the probabilities. We can now calculate better estimates of 
the membership probabilities from 
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where  is the normal distribution density function, namely )( ij xf
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The procedure is iterated until no worthwhile improvement in accuracy is 
obtained. For the example data, this gives the following parameter estimates: 
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The final probabilities are shown in Figure 6, the mixture model in Figure 7. 
 
AMC Health Warnings 
1. It is easy to over-fit the data (that is, to use a model with too many 
components)  because each extra component apparently improves the fit. 
Unfortunately, there is no simple and reliable method that tells us when to 
stop adding components, so we must rely on common sense. 
2. It is usually safer to constrain the model components to a common 
variance (as in the example above). Allowing individual components to have 
different variances is easy, but might cause the algorithm to crash if outliers 
are present. Usually it is better to remove outliers before starting. 
 

 
Figure 4. Example data (+) and the kernel density 
representation (curve), showing the position of the 
modes (dashed lines) and the midpoint (solid line). 

 
Figure 5. First guess of probabilities that individual data 
points (+) belong either to the lower component of the 
mixture model (P1, solid line) or to the higher component 
(P2, dashed line). 

 
Figure 6. Probabilities that individual data points (+) 
belong either to the lower component of the mixture 
model (P1, solid line) or to the higher component (P2, 
dashed line), at the end of the iteration. 

 
Figure 7. Data modelled as a mixture of two normal 
distributions (solid line). Individual components shown 
as dashed lines. 

 

Other AMC products can be found on: http://www.rsc.org/AMC/ 
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