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Robust statistics: a method of coping with outliers

Robust statistics is a convenient modern way of
summarising results when we suspect that they include
a small proportion of outliers. Most estimates of
central tendency (e.g., the arithmetic mean) and
dispersion (e.g., standard deviation) depend for their
interpretation on an implicit assumption that the data
comprise a random sample from a normal distribution.
But we know that analytical data often depart from
that model.  They are often heavy tailed (contain a
higher than expected proportion of results far from the
mean) and sometimes contain outliers.

Let’s consider an example data set:

4.5    4.9    5.6    4.2    6.2    5.2    9.9.

The value 9.9 is clearly suspect, even in such a small
sample. If we include the suspect value in the
calculations, we obtain: x s= =5 8 1 9. , . .  These statistics,

used to define a model based on a normal distribution,
describe the data, but not well. The mean seems to have a
high bias, while the standard deviation seems too large
(Fig 1). Moreover, the numerical values of these
estimates, especially that of the standard deviation, are
highly dependent on the actual value of the suspect value.
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A more reasonable interpretation of these data is that they
comprise a random sample from a population with a mean
of about 5 and a standard deviation of about 1, with an
outlier at 9.9. If we exclude the outlier from the
calculations we find x s= =51 0 7. , . .  These statistics

provide a plausible normal model for most of the data (Fig

2). Although it provides us with no warning about the
possible presence of outliers, this model is often preferable
in applications in analytical science.
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Outlier tests and robust methods
Typically we handle suspect values by employing tests
such as Dixon’s test or Grubbs’ test to identify them as
outliers at particular confidence levels. This procedure is
not necessarily straightforward. Firstly, simple versions of
the tests may mislead if two or more outliers are present.
Secondly, we have to decide whether to exclude the outlier
during the calculation of further statistics. This raises the
contentious question of when it is justifiable to exclude
outliers.

Robust statistics provides an alternative procedure, which
provides a model describing the ‘good’ part of the data,
but does not require us to identify specific observations as
outliers or exclude them. There are many different robust
estimators of mean and standard deviation. First we will
look at a very simple method, and then a more
sophisticated one.

The median/MAD method
In this method we simply take the central value of the
ordered data (the median) as the estimate of the mean.

4.2    4.5    4.9    5.2    5.6    6.2    9.9

We notice that the median does not change however much
we increase the value of the outlier. The median is a
robust estimator of the mean, given by $ . .µ = 5 2  (We call



the estimator $µ  (pronounced ‘mu-hat’) to distinguish it

from x , the ordinary arithmetic mean.)

To estimate the standard deviation we first calculate the
differences between the values and the median, namely (in
the same order):

-1.0    -0.7    -0.3     0.0     0.4     1.0     4.7.

Then we arrange the differences in order of magnitude
(i.e., without regard to the sign) and find the median of
these values (the median absolute difference, or MAD).
This gives:

0.0     0.3     0.4     0.7     1.0     1.0     4.7,

and a value of MAD = 0.7. Again we notice that
increasing the outlying result has no effect on the value of
MAD. We find the robust standard deviation estimate by
multiplying the MAD by a factor that happens to have a
value close to 1.5. This gives us a robust value (‘sigma-
hat’) of  $ . .σ = 1 05  

If we use this method on data without outliers, it provides
estimates that are close to x  and s, so no harm is done.

Huber’s method
Huber’s method makes more use of the information
provided by the data. In this method, we progressively
transform the original data by a process called
winsorisation.1 Assume that we have initial estimates
called $ , $µ σ0 0 . (These could be evaluated as median-

MAD estimates, or simply x  and s.) If a value xi  falls

above $ . $µ σ0 015+  then we change it to ~ $ . $xi = +µ σ0 01 5 .

Likewise if the value falls below $ . $µ σ0 015−  then we

change it to ~ $ . $xi = −µ σ0 01 5 . Otherwise, we let
~x xi i= . We then calculate an improved estimate of mean

as ( )$ mean ~µ1 = xi , and of the standard deviation as

( )$ . stdev ~σ 1 1134= × xi . (The factor 1.134 is derived

from the normal distribution, given a value 1.5 for the
multiplier most often used in the winsorisation process.)

Our example data set is somewhat small to subject to
winsorisation, but it serves as an illustration of the
method. By using $ . , $ .µ σ0 05 2 105= = , winsorisation

transforms the data set into

4.5     4.9     5.6     4.2     6.2     5.2     6.775,

and the improved estimates are $ . , $ .µ σ1 15 34 104= = . This

procedure is now iterated by using the current improved
estimates for the winsorisation at each cycle. Eventually
the process converges to an acceptable degree of accuracy,
and the resulting values are the robust estimates. For our

data we find that $ . , $ .µ σHub Hub= =5 36 115 . The

procedure converges slowly, so the method is not suitable
for hand calculation. A Minitab implementation of the
algorithm is provided in AMC Software.

Other robust statistics
More complex types of statistics such as analysis of
variance2  and regression3 can also be robustified. Robust
analysis of variance is particularly useful in analytical
science for the interpretation of data from collaborative
trials4. Robust regression would be useful in calibration,
but no analytical studies are yet available.

A cautionary note
Using robust estimates of mean and standard deviation to
predict future values from a normal distribution may
mislead the unwary because the presence or probability of
outliers is not predicted. Employing robust estimates for
estimating confidence limits is often useful but the values
obtained should be regarded as suggestive only and not for
exact interpretation.

When not to use robust methods
Robust methods assume that the underlying distribution is
roughly normal (and therefore unimodal and symmetrical)
but contaminated with outliers and heavy tails. The
methods will give misleading results if they are applied to
data sets that are markedly skewed or multimodal, or if a
large proportion of the data are identical in value.

A final word on outliers
Obtaining a robust statistical model of a data set provides
probably the best method for identifying suspect values for
further investigation. Taking our example data, we simply
transform them by z x= −( $ ) / $µ σ  . Using

$ . , $ .µ σ= =5 36 115 , we obtain the results:

z = [-0.7   -0.4    0.2   -1.0    0.7   -0.1    3.9].

Any value greater than about 2.5 could be regarded as
suspect, and our candidate outlier is clearly visible.
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