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The Bootstrap: A Simple Approach to Estimating Standard Errors and Confidence
Intervals when Theory Fails

Standard errors and confidence intervals for a simple statistic
like the mean can be calculated by the use of an algebraic
formula derived from familiar assumptions about the data,
such as the normal distribution. For a more complex type of
statistic (like the familiar relative standard deviation), or where
the standard assumptions do not apply, we often find that an
algebraic formula cannot be derived.  In such instances, a
simple alternative method based on re-sampling the data is
becoming increasingly popular. This computer-intensive
method, known as the bootstrap1, is widely applicable and is
introduced here by two straightforward examples.

Basics
The bootstrap can be used to estimate the standard error of the
estimate of a parameter θ  calculated from a dataset x consisting of
n individual values, i.e., x = (x1, x2,...,xn). θ  could be, for example,
a simple mean or a more complex entity calculated from the data.
We generate a large number B of new data sets, each of the same
size as the original, by sampling x at random with replacement.
Each resampled data set x* is known as a bootstrap sample.

Sampling with replacement means that, if any member xi of the
original set is chosen as the first value of the bootstrap sample, it
could also be chosen as any of the successive values. In principle,
therefore, a bootstrap sample could consist of the same value
repeated n times. In practice, however, such an occurrence would
be unlikely, because the number of different bootstrap samples
available would be nn. Even  for a dataset of size n = 5 there would
be 3125 distinct possible bootstrap samples.

For each of these bootstrap samples ( )xb b B∗ = 1, ,K  we calculate

$θb
∗  (a bootstrap replication), which is the estimate of the parameter

θ  obtained from the b-th bootstrap sample. We obtain the bootstrap
estimate of the standard error of θ  simply by calculating the

standard deviation of the $θb
∗ values. The confidence intervals could

be estimated from the usual formula $ $θ ± zsb  
where  $θ  is the

ordinary mean, $sb is standard deviation of the $θb
∗ values and z

represents the critical value on the N(0,1) distribution, and takes
the value of 1.96 for the 95% confidence level. This latter operation

depends on the assumption that $θb
∗ is normally distributed. We

could inspect a histogram of $θb
∗ to see whether that assumption was

plausible.

Where $θb
∗  seems to differ from the normal, confidence intervals

can be estimated by sorting the values of $θb
∗ into ascending order. If

we wanted (say) a 95% confidence interval and we had B = 1000
bootstrap samples, the empirical lower and upper limits would be
the 25th (0.025B) and 975th (0.975B) values in the sorted data.  In

practice the distribution of $θb
∗ is often found to be skewed (because

we are usually dealing with a complex type of statistic), so these
empirical confidence intervals are probably safer.

A Simple Example
For demonstration purposes, we use the bootstrap method here to
calculate a standard error (SEM) and 95% confidence interval for a
ordinary mean. In this instance, of course, the two results can be
obtained by statistical theory under the normal assumption, so we
can compare the bootstrap result with a classical t-interval. The
data used are shown below.

0.003  0.070  0.164  0.195  0.441  0.566  0.742  1.136  1.160
1.312  1.623  1.684 1.750  1.803  2.180

Examination of a dotplot of the data shows no obviously suspect
data, although we might reasonably entertain doubts that the parent
distribution was normal. (There is, in fact, a significant deviation
from normality.)
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The classical statistics can be obtained by using the standard
formulae, to give:

x = 0 991. and SEM s n= = 0 188. .
By assuming a normal distribution we obtain a 95% t-interval of
(0.588, 1.393).

Below is a dotplot of a typical bootstrap sample: some values from
the original data occur more than once (e.g., 0.003) and some not at
all (e.g., 2.180).
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We now produce 1000 bootstrap samples and for each calculate the

mean ( $θb
∗ ). The bootstrap SEM is simply the standard deviation of

$θb
∗ , and is found to be 0.176. The 95% confidence limits calculated

under the normal assumption are:
0 991 1 96 0 176 0 546 1 336. . . ( . , . )± × = , which is close to the

classical t-interval.

Figure 1 shows a histogram of the 1000 $θb
∗ values, with the 2.5th

and 97.5th percentiles shown as solid bars. There is a slight
negative skew, reflecting  the non-normality of the original data.
The empirical 95% confidence limits (which take account of the
skew) are obtained by using the percentile method, in which the

values of $θb
∗  are sorted into ascending order. The lower and upper

limits are the 25-th and 975-th values in the sorted data, and are
found to be (0.627, 1.320). The empirical bootstrap interval is
comparable with, but slightly narrower than, the classical interval.
However, in the calculations we have made no assumptions (such
as normality) about the original data.
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A More Complex Example
The real benefit of the bootstrap is that it can be used on very
complex statistics where statistical theory does not provide an
answer. Here we use the bootstrap to look at a moderately complex
example, the results of a collaborative trial. In this trial,  twelve
laboratories have independently analysed portions of a
homogeneous test material, in duplicate, by a specified method. The
results (in ppm) are as follows.

Lab. No. 1st result 2nd result

1 63 61

2 64 62

3 70 68

4 64 60

5 76 75

6 71 71

7 64 65

8 61 64

9 50 53

10 65 70

11 73 74

12 76 72

The most important statistic derived from a collaborative trial is
that describing the reproducibility (between-laboratory) precision,
here expressed as a percentage relative standard deviation
(RSDR%). This is a complicated statistic, involving several stages
of calculation. The procedure here is as follows:

• take a bootstrap sample from the 12 pairs of results;
• calculate the overall mean x , and the mean squares within

laboratories and between laboratories (MSW and MSB
respectively) by one-way analysis of variance;

• calculate ( )RSDR MSB MSW x% /= +100 2 ;

• repeat the above steps for the required number (2000) of
bootstrap samples.

We are interested in the 95% confidence interval of the RSDR%
(roughly speaking, how variable the RSDR% estimate might be if
the whole experiment were repeated many times) but, as for many
other complex types of statistic, there is no algebraic formula for its
estimation.

The outcome of this procedure, with 2000 bootstrap samples, is the
following distribution (Fig 2) with a mean of 10.48%
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Figure 2

The 95% confidence limits of RSDR%, given by the 2.5-th and
97.5-th percentiles of this distribution, are 6.3% and 14.2%. This
shows that these results from a collaborative trial, which are fairly
typical, provide a rather variable estimate of reproducibility relative
standard deviation, a result that may surprise those unacquainted
with this type of statistical analysis.
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Appendix

Tutorial-style information about the bootstrap, plus examples,
software etc.,  can be found in the Website of Resampling Stats on
www.resample.com

To obtain a bootstrap sample in a statistics package is
straightforward. In MINITAB, for example, if the ten original data
are in column 1 (C1), the commands required to generate a
bootstrap sample in column 2 (C2) are:

SAMPLE 10 C1 C2;
   REPLACE.

To generate a large number of samples (say 1000) and store the
relevant statistic from each sample (in this case, the mean) in
Column 3 (C3) the following code is needed in a MINITAB macro.

DO I = 1:1000
   SAMPLE 10 C1 C2;
    REPLACE.
   LET C3(I) = MEAN(C2)
ENDDO
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