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Why are we weighting? 
 
When we calibrate an analytical system, we use a calibration set 
with concentrations and measure i , the 
corresponding responses.  If the values of  i  are essentially 
error-free, regression is usually appropriate to obtain the 
calibration function  that we use to estimate unknown 
concentrations. But should we use simple or weighted regression?  
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The question arises because simple regression is based on a statistical model 
in which the variance of an observed response is the same across the whole 
calibration range (Figure 1). However, this circumstance is unlikely to be 
strictly true in chemical analysis. In typical (but not all) analytical 
calibrations, the variance of the response is heteroscedastic, increasing 
steadily with the concentration. We can see this effect in the example data 
(Figure 2). (This example was chosen because, unusually, the variance in the 
response is large enough at higher concentrations to be visible on the scale of 
the figure.) In such instances, weighted regression, based on a heteroscedastic 
model (Figure 3), should give a more accurate answer. Differences between 
calibration functions estimated by the two methods are small over most of the 
range but could lead to serious error at low concentrations (Figure 4). 
 
Somewhat more effort is required to execute weighted regression, so the 
obvious question arises: when, if at all, is that extra effort justified? The 
answer depends on a number of circumstances, including:  
• the characteristics of the analytical system; 
• the design of the calibration set (evenly spaced or otherwise);  
• the calibration range in relation to the detection limit; 
• the unknown concentration of the analyte in a test solution; 
• the required accuracy of the analysis. 
 
 Why calibrations are heteroscedastic 
Most analytical calibration functions are derived from a calibration set with 
concentrations from zero upwards. Such a system naturally has two separate 
contributions to the precision of the response at any one concentration. Firstly 
there is the variation in response when the concentration is zero, that is, in the 
calibration blank. Suppose that variation has a standard deviation 0σ . That 
value is equivalent to a ‘naïve detection limit’∗ of  ScL 03σ=  where, for a 
linear calibration, S is the sensitivity of the system (the slope of the 
calibration line). 
  
The zero-point variation will also be present in the response from calibrators 
containing analyte. In that case, however, there will be an additional 
independent variation that we can usually expect to be proportional to the 
concentration. The standard deviation of this concentration-dependent 
component will be of the form SAcc =σ , where A is a constant, the relative 
standard deviation of the response at high concentrations. So at any 
concentration we will see a response with a standard deviation of  c
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Equation 1 accounts for changing standard deviation rather well in most 
cases. (Our example data are compared with this model in Figure 5.) At low 
concentrations (where ), we find an almost constant . 
Simple regression would serve well for calibrations in this concentration 
range. At high concentrations (where ) the function tends  
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∗ ‘Naïve’ because, as we shall see, in most instances the system is incapable of 
delivering such a low value. 

 
Figure 1.  Model used for linear regression. The x-values 
are fixed and the y-values (points) are subject to 
measurement variation with constant variance. 

 
Figure 2.  Calibration data (points) for 239Pu determined 
by ETV-ICP-MS. Simple and weighted regression lines 
are indistinguishable at this scale. (The data can be found 
in AMC Data on www.rsc.org/amc.) 

 
Figure 3. A heteroscedastic model of regression. The 
variance increases with the signal. 

 
 
 
Figure 4.   Same data as Figure 2, showing the zone near 
zero concentration. A response of (say) 16 would give 
rise to a serious inaccuracy if the simple regression line 
were used.
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towards SAc=σ , that is, an almost constant relative standard 
deviation, and for this region weighted regression will be more 
accurate. But is the improvement in accuracy worthwhile? If so, 
where should we draw the line between our choice of methods? 
We can tackle this question by generalising Eq 1 across 
analytical methods. This is done by expressing concentration c  
and standard deviation σ  in units of detection limit. This gives 
us  
 
Eq 2:       2291 cAS +=σ .        
                                          
We can now investigate two commonly encountered designs for 
analytical calibration. 

 
Figure 5.  Example data (points) and Equation 1 (solid line) with 

showing the line of constant relative 
standard deviation 

,0292.0,3.73,100 === ASσ
SAc=σ (dashed line). ( 0σ  was estimated 

separately.) 
 
Evenly spaced calibrators 
Let us consider a typical calibration design—six evenly spaced 
concentrations from zero to a maximum of . We assume 
that responses are random, independent, and normally 
distributed with standard deviation according to Equation 2. 
Finally we assume a value of , as typical for 
instrumental methods. We can then find the confidence interval 
for any unknown predicted concentration after using both simple 
and weighted regression. (Technical Brief No 22 provides some 
background to this topic.) The two confidence intervals can be 
compared at particular predicted concentrations by considering 
the ratio of standard deviations (simple/weighted regression) as 
a function of generalised concentration. A summary of the 
outcome is shown in Figure 6.  
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Figure 6.  Precision ratio (simple regression: weighted regression) as a 
function of the maximum calibration concentration cmax, for an assumed 
value of A = 0.01. The labels on the lines show a range of example 
‘unknown’ concentrations c relative to cmax. The ratio is minimal around 

4.0max =cc , near the centre of the calibration range.) 
 

The model predicts that weighted regression should give a more 
precise result (ratio greater than unity) under all circumstances, 
but over much of the range the deviation from unity is small and 
could often be safely ignored. So, for short-range calibrations 
(up to say ), any difference between the outcomes of 
simple and weighted regression is probably negligible. For 
longer range calibrations, we could often accept an increase in 
uncertainty of  30% (a factor of 1.3). In most measurement 
results this would be an imperceptible change and, in any event, 
a small proportion of the combined uncertainty. However, 
results between zero and max would be detrimentally 
affected by inflated variance, and results near to zero severely 
affected. For example, with , the precision at zero 
concentration is degraded by a factor of 500 by using simple 
regression. 
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(These conclusions would be modified in an obvious way if 
values of A other than 0.01 were appropriate.) 
 
‘Logarithmically-spaced’ calibrators 
Another commonly used design of the calibration set is where 
successive concentrations increase by a constant factor, plus a 
zero-level calibrator. For comparison with even spacing we 
consider a calibration set with generalised concentrations 0, 10, 
100, 1000, 10000, 100000). The precisions found with weighted 
regression were uniformly close to those found previously for 
the evenly-spaced design. For simple regression, however, the 
results were about 25% higher than weighted regression, except 
below the max  level, where precisions were more severely 
affected. For example, at zero concentration, the precision was 
worse by a factor of about 70, considerably less than with 
evenly-spaced calibrators, but still substantial. 
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Recommendations 
• For short-range calibrations (up to about 200 times the 

detection limit) there is no worthwhile advantage in 
using weighted regression. 

• For longer range calibrations, weighted regression offers 
no worthwhile advantage unless the concentrations of 
interest include low levels (below 0.2 times the 
calibration maximum). At low levels, precision may be 
substantially degraded by using simple regression. 
Realistic detection limits will be seriously degraded 
unless weighted regression is used. 

• For longer range calibrations, logarithmically spaced 
calibrators give rise to a degradation in precision in 
comparison with uniformly spaced calibrators if simple 
regression is used. If weighted regression is used, 
precisions are very similar to those found with uniform 
spacing. There is no benefit in using logarithmically 
spaced calibrators.  
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