Direct Synthesis of Bicyclic Guanidines through Unprecedented Palladium(II) Catalysed Diamination with Copper Chloride as Oxidant

Claas H. Hövelmann, Jan Streuff, Lydia Brelot and Kilian Muñiz*

Institut de Chimie, UMR 7177, Université Louis Pasteur, 4 rue Blaise Pascal, F-67000 Strasbourg Cedex, France.

E-mail: muniz@chimie.u-strasbg.fr

SUPPORTING INFORMATION

Table of Contents

General	3
General Procedure for the Diamination of Guanidines	3
Synthesis of Starting Materials 1a-f and 3a-f	4
Analytical Data for New Compounds	5
Deprotection procedures	22
Aminochlorination and Aminoacetoxylation Procedures	23
Stereochemical Analysis	26
Data on X-Ray Structure Determination	28
Spectral Reproduction of Starting Materials and Products	32

General: All organic reagents were purchased from Acros, if not noted otherwise. All palladium salts were purchased from Acros. N,N'-di-Boc-N'trifluoromethane-sulfonylguanidine and *N*,*N*-di-Cbz-*N*'-trifluoromethanesulfonylguanidine were purchased from Fluka. N,N'-di-Boc-N'-trifluoromethanesulfonylguanidine has been synthesised from N-N-di-(tert-butoxycarbonyl)guanidine¹ according to literature procedure.² lodosobenzene diacetate was purchased from Aldrich. Dichloromethane was dried over calcium chloride and distilled from CaH₂. Absolute DMF was purchased from Fischer Chemicals and stored over 4Å molecular sieves. Column chromatography was performed with silica gel (Merck, type 60, 0.063-0.2mm). NMR spectra were recorded on Bruker Avance 400 MHz, Bruker DPX 300 MHz and Bruker DRX 500 MHz spectrometers. All chemical shifts in NMR experiments are reported as ppm downfield from TMS. The following calibrations were used: $CDCI_3 \delta = 7.26$ and 77.00 ppm, $C_6D_6 \delta$ = 7.16 and 128.0 ppm. MS (ESI-LCMS) experiments were performed using an Agilent 1100 HPLC with a Bruker micro-TOF instrument (ESI). Unless other wise stated, a Supelco C8 (5cm x 4.6mm, 5µm particles) column was used with an linear elution gradient from 100% H_2O (0.5% HCO_2H) to 100% MeCN in 13min at a flow rate of 0.5mL/min. MS (EI) and HRMS experiments were performed on a Kratos MS 50 within the service centers at the Kekulé-Department, Bonn University. IR Spectra in the range of 4000-400 cm⁻¹ were obtained on a Nicolet Magna 550 FT-IR Spectrometer with samples investigated as KBr pellets and the data is reported as cm⁻¹.

General Procedure for the Diamination of Guanidines Copper bromide as oxidant:

A solution of the guanidine (0.3 mmol, 1.0 eq.), $CuBr_2$ (0.9 mmol, 3.0 eq.), K_2CO_3 (0.3 mmol, 1.0 eq.) and $Pd(OAc)_2$ (0.03 mmol, 0.1 eq.) in DMF (3 mL) was stirred at room temperature until TLC control showed complete conversion of the starting material. The reaction was stopped by addition of 2 mL saturated aqueous $Na_2S_2O_3$ solution and stirred for additional 60 min. Water (5 mL) was

added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The organic phase was dried over MgSO₄ and the solvent removed under reduced pressure to yield analytically pure products.

Copper chloride as oxidant:

A solution of the guanidine (0.3 mmol, 1.0 eq.), $CuCl_2$ (0.63 mmol, 2.1 eq.), K_2CO_3 (0.3 mmol, 1.0 eq.) and $Pd(OAc)_2$ (0.03 mmol, 0.1 eq.) in DMF (3 mL) was stirred at room temperature until TLC control showed complete conversion of the starting material. The reaction was stopped by addition of 2 mL saturated aqueous $Na_2S_2O_3$ solution and stirred for additional 60 min. Water (5 mL) was added and the mixture was extracted with CH_2Cl_2 (3 x 20 ml). The organic phase was dried over MgSO₄ and the solvent removed under reduced pressure to yield analytically pure products.

Synthesis of Starting Materials 1a-f and 3a-f

Starting materials **1a-f** and **3a-f** were synthesised by treatment of the corresponding amine³ with N,N'-di-Boc-N'-trifluoromethanesulfonylguanidine or N,N-di-Cbz-N'-trifluoromethanesulfonylguanidine following a literature procedure.²

The amine (1.0 eq.) and NEt₃ (1.0 eq.) were dissolved in dry CH_2Cl_2 (4mL/mmol) and the trifluoromethanesulfonylguanidine was added in one portion. The reaction was stirred overnight at r.t. and stopped by addition of saturated NaHCO₃ solution (5 mL). 10 mL of CH_2Cl_2 were added and the organic phase was washed with brine. The organic phase was dried over MgSO₄ and the solvent was removed in vacuo. Column chromatography (silica, hexanes/CH₂Cl₂ 1:1 v/v) gave analytically pure products as white solids.

Analytical Data for New Compounds

Bis-*tert*-butyl(2,2-diphenyl-pent-4-en-1-yl)amino-methylylidenebiscarbamate

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 92 % yield.

¹H NMR (CDCl₃, 400 MHz) δ = 1.34 (s, 9H), 1.42 (s, 9H), 2.85 (d, *J* = 6.8 Hz, 2H), 4.03 (d, *J* = 4.8 Hz, 2H), 4.88 (dd, *J* = 1.2, 10.4 Hz, 1H), 4.95 (dd, *J* = 1.2, 17.2, Hz, 1H), 5.36 (ddd, *J* = 6.8, 10.4, 17.2 Hz, 1H), 7.10-7.22 (m, 10H), 8.16 (br, 1NH). ¹³C NMR (CDCl₃, 100 MHz) δ = 27.89, 28.22, 42.01, 47.87, 49.95, 79.10, 82.73, 118.52, 126.38, 128.04, 128.07, 133.54, 145.01, 152.73, 156.17. MS (EI): m/z = 479.3 (70) [M+], 423.2 (20), 406.2 (10), 367.1 (30), 350.1 (30), 326.1 (10), 264.1 (10), 220.1 (30), 216.0 (40), 207.1 (50), 178.1 (20), 160.0 (100), 129.1 (70), 116.1 (15), 91.1 (50). HRMS. calcd for C₂₈H₃₇N₃O₄: 479.2784, found: 479.2779. IR (KBr): v = 3679, 3449, 3321, 3287, 3063, 3004, 2982, 2932, 1733, 1648, 1618, 1447, 1409, 1355, 1253, 1224, 1145, 1053, 908, 879, 810, 782, 757, 726, 699, 678.

Bis-*tert*-butyl(2,2-dimethyl-pent-4-en-1-yl)amino-methylylidenebiscarbamate

NBoc NHBoc

1b

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 94 % yield.

¹H NMR (CDCl₃, 400 MHz) δ = 0.88 (s, 6H), 1.43 (s, 9H), 1.44 (s, 9H), 1.95 (d, *J* = 7.6 Hz, 2H), 3.18 (d, *J* = 5.2 Hz, 2H), 5.00 (m, 2H), 5.74 (ddt, *J* = 7.6, 10.4, 17.2 Hz, 1H), 8.44 (t, *J* = 5.2 Hz, 1NH). ¹³C NMR (CDCl₃, 100 MHz) δ = 25.03, 28.05, 28.30, 34.08, 44.37, 50.46, 79.05, 82.94, 117.80, 134.27, 153.39, 156.54, 163.68. MS (EI, eV): m/z (%): 355.2 [M]⁺ (4), 314.2 (2), 299.1 (10), 282.1 (5), 258.1 (6), 243.1 (70), 226.1 (44), 202.0 (100), 198.1 (8), 161.0 (60), 143.0 (6), 117.0 (10), 96.0 (4), 72.0 (3), 57.0 (28). HRMS calcd for C₁₈H₃₃N₃O₄: 355,2471 found: 355.2473. IR (KBr): v = 3680, 3434, 3328, 3079, 2980, 2968, 2932, 1731, 1652, 1623, 1575, 1473, 1457, 1414, 139, 1369, 1337, 1282, 1252, 1225, 1163, 1140, 1100, 1054, 809, 761, 640.

Bis-tert-butyl(1-allylcyclohexyl-methyl)amino-methylydene- biscarbamate

1c

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 89 % yield.

¹H NMR (CDCl₃, 400MHz): δ = 1.25-1.57 (m, 10H), 1.49 (s, 18H), 2.09 (d, *J* = 7.6 Hz, 2H), 3.30 (d, 5.0 Hz, 2H), 5.02-5.11 (m, 2H), 5.79 (ddt, *J* = 7.6, 9.9, 17.0 Hz, 1H), 8.45 (s, 1NH). ¹³C NMR (CDCl₃, 100MHz): δ = 21.31, 26.11, 28.05, 28.30, 33.58, 36.42, 40.21, 47.29, 79.03, 82.89, 117.70, 133.97, 153.37, 156.46, 163.73. MS (EI) m/z = 395.3 [M]⁺ (10), 354.2 (15), 339.2 (10), 298.2 (15), 283.1 (50), 266.1 (30), 242.1 (100), 217.1 (5), 186.0 (10), 161.0 (50), 148.0 (10), 143.0 (10), 99.0 (10), 95.1 (15), 81.1 (15), 57.1 (25). HRMS. calc.: 395.2784, found: 395.2780. IR (FT-IR, Ge): v = 3335, 2978, 2928, 1718, 1639, 1415, 1366, 1330, 1134, 1056, 798.

1d

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 97 % yield.

¹H NMR (CDCl₃, 400 MHz) = 2.94 (d, *J* = 7.0 Hz, 2H), 4.15 (d, *J* = 5.0 Hz, 2H), 4.98 (dd, *J* = 2.1, 10.2 Hz, 1H), 5.04 (dd, *J* = 2.1, 17.2 Hz, 1H), 5.10 (s, 2H), 5.13 (s, 2H), 5.43 (ddt, *J* = 7.0, 10.2, 17.2 Hz, 1H), 7.20-7.44 (m, 20H), 8.21 (t, *J* = 5.0 Hz, 1NH). ¹³C NMR (CDCl₃, 100 MHz) = 42.05, 47.93, 49.80, 67.05, 67.95, 118.69, 126.57, 127.83, 127.95 (2C), 128.23, 128.36, 128.43, 128.57, 128.67, 133.42, 134.51, 136.82, 144.79, 153.46, 156.05, 163.61. MS (EI): m/z = 547.2 (40) [M⁺], 504.1 (30), 460.1 (10), 439.2 (10), 355.1 (15), 261.1 (10), 207.1 (70), 165.1 (10), 129.1 (60), 108.1 (25), 91.1 (100), 79.1 (20). HRMS. calcd for $C_{34}H_{33}N_3O_4$: 547.2471, found: 547.2465. IR (KBr): v = 3670, 3439, 3279, 3087, 3064, 3030, 2930, 2900, 1722, 1647, 1585, 1496, 1427, 1392, 1324, 1201, 1149, 1087, 1055, 916, 803, 756, 746, 698, 585, 497.

Dibenzyl(2,2-dimethyl-pent-4-en-1-yl)amino-methylylidene-biscarbamate

NCbz NHCbz

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 87 % yield.

¹H NMR (CDCl₃, 400MHz): δ = 0.84 (s, 6H), 1.94 (d, *J* = 7.6 Hz, 2H), 3.19 (d, *J* = 5.6 Hz, 2H), 4.96 (m, 1H), 5.00 (m, 1H), 5.03 (s, 2H), 5.08 (s, 2H), 5.71 (ddt, *J* = 7.6, 9.4, 17.5 Hz, 1H), 7.14-7.32 (m, 10H), 8.41 (s, 1NH). ¹³C NMR (CDCl₃,

100MHz): δ = 24.80, 34.08, 44.11, 50.30, 66.90, 67.91, 117.80, 127.67, 127.88, 128.19, 128.27, 128.49, 128.57, 133.96, 134.41, 136.70, 153.83, 156.20, 163.62. MS(EI) m/z = 423.2 [M]⁺ (10), 382.2 (5), 341.1 (5), 288.2 (7), 208.1 (15), 181.1 (10), 166.1 (5), 124.0 (5), 108.0 (25), 91.0 (100), 79.0 (25), 55.1 (10). HRMS. calc.: 423,2158, found: 423.2140. IR (FT-IR, Ge): v = 3326, 3078, 3033, 2959, 2903, 1729, 1648, 1628, 1428, 1388, 1349, 1329, 1253, 1209, 1146, 1054, 989, 912, 749.

Dibenzyl(1-allylcyclohexyl-methyl)amino-methylydene-biscarbamate

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 85 % yield.

¹H NMR (CDCl₃, 400MHz): δ =1.20-1.52 (m, 10H), 2.07 (d, *J* = 7.6 Hz, 2H), 3.31 (d, *J* = 5.3 Hz, 2H), 5.00-5.08 (m, 2H), 5.09 (s, 2H), 5.14 (s, 2H), 5.76 (ddt, *J* = 7.6 , 10.2, 17.2 Hz, 1H), 7.15-7.40 (m, 10H), 8.42 (s, 1NH). ¹³C NMR (CDCl₃, 100MHz): δ = 21.16, 21.22, 25.96, 33.45, 36.47, 40.18, 66.94, 67.97, 117.83, 127.72, 127.88, 128.26, 128.33, 128.56, 128.64, 133.66, 134.46, 136.80, 153.89, 156.19, 163.69. MS (EI, eV): m/z (%): 463.3 [M]⁺ (10), 422.2 (15), 420.1 (8), 348.2 (6), 328.2 (14), 314.1 (5), 271.1 (3), 248.1 (15), 228.1 (20), 206.1 (5), 189.1 (5), 152.1 (5), 123.1 (7), 108.0 (43), 91.0 (100), 79.0 (22), 77.0 (15), 65.1 (5), 51.0 (3). HRMS: calcd for C₂₇H₃₃N₃O₄: 463,2471 found: 463.2446. IR (FT-IR, Ge): v = 2926, 2854, 1753, 1620, 1452, 1395, 1341, 1298, 1258, 1163, 1127, 1086, 1010, 740.

Bis-tert-butyl(2,2-diphenyl-hex-5-en-1-yl)amino-methylylidene-biscarbamate

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 96 % yield.

¹H NMR (CDCl₃, 400MHz): δ = 1.40 (s, 9H), 1.50 (s, 9H), 1.79-1.87 (m, 2H), 2.13-2.20 (m, 2H), 4.14 (d, *J* = 5.0 Hz, 2H), 4.88 (d, *J* = 10.2 Hz, 1H), 4.95 (d, *J* = 17.2 Hz, 1H), 5.73 (ddt, *J* = 6.7, 10.2, 17.2 Hz, 1H), 7.14-7.32 (m, 10H), 8.09 (s, 1NH). ¹³C NMR (CDCl₃, 100MHz): δ = 27.88, 28.23, 28.77, 36.56, 47.73, 50.15, 78.99, 82.66, 114.37, 126.34, 128.00, 128.12, 138.64, 145.44, 152.62, 156.38, 163.53. MS (EI): m/z = 493.3 (50) [M+], 437.2 (10), 420.2 (10), 381.1 (15), 364.2 (30), 340.1 (15), 234.1 (30), 221.1 (80), 216.1 (50), 180.1 (30), 167.1 (50), 160.0 (100), 143.1 (20), 117.1 (20), 98.0 (15), 91.0 (30). HRMS. calcd for C₂₉H₃₉N₃O₄: 493.2941, found: 493.2935. IR (KBr): v = 3678, 3433, 3322, 3290, 3090, 3065, 3025, 2979, 2951, 2932, 1725, 1647, 1578, 1449, 1410, 1359, 1340, 1272, 1253, 1225, 1145, 1057, 1016, 908, 808, 769, 756, 700, 668.

Bis-tert-butyl(2,2-dimethyl-hex-5-en-1-yl)amino-methylylidene-biscarbamate

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 90 % yield.

¹H NMR (CDCl₃, 400 MHz) δ = 0.92 (s, 6H), 1.31 (m, 2H), 1.47 (s, 18H), 2.01 (dtt, *J* = 1.2, 6.4, 10.4 Hz, 2H), 3.22 (d, *J* = 5.2 Hz, 2H), 4.89 (ddt, *J* = 0.8, 1.2, 10.0 Hz, 1H), 4.98 (dtt, *J* = 1.2, 1.2, 17.2 Hz, 1H), 5.76 (ddt, *J* = 6.4, 10.0, 17.2 Hz, 1H), 8.46 (br, 1NH). ¹³C NMR (CDCl₃, 100 MHz) δ = 25.26, 28.15, 28.38, 28.45, 33.72, 38.99, 50.64, 79.17, 83.06, 114.28, 139.14, 153.48, 156.62, 163.76. MS (EI, eV): m/z (%): 369.3 [M]⁺ (8), 313.2 (10), 296.2 (6), 273.2 (4), 257.1 (100), 240.1 (58), 212.1 (14), 203.1 (45), 196.1 (8), 161.0 (96), 148.0 (42), 143.0 (10), 117.0 (12), 98.0 (19), 86.0 (4), 69.1 (8), 57.1 (54). HRMS calcd for $C_{19}H_{35}N_3O_4$: 369.2628 found: 369.2633. IR (FT-IR, Ge): v = 3381, 3328, 2963, 2932, 1721, 1646, 1618, 1412, 1364, 1339, 1254, 1138, 1058, 809.

Bis-*tert*-butyl(1-but-3-en-1-yl-cyclohexyl-methyl)amino-methylydenebiscarbamate

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 92 % yield.

¹H NMR (CDCl₃, 400MHz): δ =1.20-1.45 (m, 12H), 1.47 (s, 18H), 1.92-2.01 (m, 2H), 3.28 (d, *J* = 5.0 Hz, 2H), 4.87 (dd, *J* = 1.8, 10.2 Hz, 1H), 4.97 (dd, *J* = 1.8, 17.0 Hz, 1H), 5.75 (ddt, *J* = 6.4, 10.2, 17.0 Hz, 1H), 8.39 (t, *J* = 5.0 Hz, 1NH). ¹³C NMR (CDCl₃, 100MHz): δ = 21.23, 26.09, 27.34, 27.94, 28.19 33.75, 34.58, 35.70, 47.02, 78.88, 82.77, 114.03, 139.11, 153.28, 156.39. 163.60. MS (ESI-LCMS): m/z (%): 410.5 [M+H]⁺ (100). HRMS: calcd for C₂₂H₃₉N₃O: 409.2941, found: 409.2954 IR (FT-IR, Ge): v = 3336, 2977, 2924, 2851, 1720, 1643, 1615, 1447, 1411, 1365, 1339, 1250, 1135, 1056, 810, 765.

Dibenzyl(2,2-diphenyl-hex-5-en-1-yl)amino-methylylidene-biscarbamate

3d

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 88 % yield.

¹H NMR (CDCl₃, 400MHz): δ = 1.82-1,92 (m, 2H), 2.19-2.26 (m, 2H), 4.22 (d, *J* = 5.3 Hz, 2H), 4.91 (dd, *J* = 1.7, 10.2 Hz, 1H), 4.96 (dd, *J* = 1.7, 17.2 Hz, 1H), 5.09 (s, 2H), 5.17 (s, 2H), 5.75 (ddt, *J* = 6.4, 10.2, 17.2 Hz, 1H), 7.21-7.46 (m, 20H), 8.12 (t, *J* = 5.3 Hz, 1NH). ¹³C NMR (CDCl₃, 100MHz): δ = 28.60, 36.59, 48.03, 49.91, 66.97, 67.86, 114.48, 126.47, 127.78, 127.88, 127.92, 128.23, 128.30, 128.36, 128.49, 128.59, 134.45, 136.74, 138.29, 145.02, 153.29, 156.10, 163.62. MS (ESI-LCMS): m/z (%): 562.6 [M+H]⁺ (100). HRMS: calcd for C₃₅H₃₅N₃O₄: 561.2628, found: 561.2614 IR (FT-IR, Ge): v = 2961, 2928, 2858, 1729, 1649, 1615, 1425, 1388, 1345, 1261, 1245, 1208, 1151, 1085, 1052, 909, 804.

Dibenzyl(2,2-dimethyl-hex-5-en-1-yl)amino-methylylidene-biscarbamate

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 95 % yield.

¹H NMR (CDCl₃, 400MHz): $\delta = 0.85$ (s, 6H), 1.22-1.29 (m, 2H), 1.91-1.99 (m, 2H), 3.20 (d, J = 5.3 Hz, 2H), 4.84 (ddd, J = 1.5, 1.9, 10.2 Hz, 1H), 4.92 (ddd J = 1.5, 1.9, 17.2 Hz, 1H), 5.04 (s, 2H), 5.08 (s, 2H), 5.70 (ddt, J = 6.4, 10.2, 17.2 Hz, 1H), 7.14-7.35 (m, 10 H), 8.40 (t, J = 5.3 Hz, 1NH). ¹³C NMR (CDCl₃, 100MHz): $\delta = 24.89$, 28.14, 33.58, 38.77, 50.51, 66.87, 67.89, 114.17, 127.66, 127.88, 128.17, 128.25, 128.56, 134.39, 138.67, 153.83, 156.17, 163.60. MS (EI, eV): m/z (%): 437.3 [M]⁺ (8), 383.2 (5), 341.2 (8), 302.2 (10), 286.2 (5), 222.1 (10), 189.1 (11), 108.0 (22), 91.0 (100), 79.0 (12), 55.1 (8). HRMS: calcd for C₂₅H₃₁N₃O₄: 437.2315. found: 437.2321. IR (FT-IR, Ge): v = 3327, 3089, 3034, 2962, 3894, 1731, 1649, 1626, 1581, 1429, 1389, 1350, 1322, 1254, 1207, 1141, 1053, 911, 746.

Dibenzyl(1-but-3-en-1-yl-cyclohexyl-methyl)amino-methylidene-

biscarbamate

3f

Synthesised according to the general synthesis of starting materials. Isolated as a white solid in 94 % yield.

¹H NMR (CDCl₃, 400MHz): δ = 1.16-1.43 (m, 12H), 1.86-1.95 (m, 2H), 3.27 (d, *J* = 5.3 Hz, 2H), 4.83 (dd, *J* = 1.5, 10.2 Hz, 1H), 4.91 (dd, *J* = 1.5, 17.0 Hz, 1H), 5.04 (s, 2H), 5.08 (s, 2H), 5.70 (ddt, *J* = 6.7, 10.2, 17.0 Hz, 1H), 7.14-7.32 (m, 10H), 8.35 (t, *J* = 5.3 Hz, 1NH). ¹³C NMR (CDCl₃, 100MHz): δ = 21.18, 25.98, 27.25, 33.63, 34.60, 35.68, 47.05, 66.88, 67.93, 114.19, 127.69, 127.89, 128.21, 128.30, 128.51, 128.60, 134.42, 136.75, 138.84, 153.89, 156.14, 163.64. MS (EI): m/z = 477.2 (10)[M⁺], 369.2 (10), 342.2 (10), 326.2 (10), 262.1 (10), 235.1 (10), 189.1 (10), 108.0 (50), 107.0 (40), 95.1 (25), 91.0 (100), 79.1 (40), 77.0 (20). HRMS calcd for C₂₈H₃₅N₃O₄: 477.2628, found: 477.2625. IR (KBr): v = 3674, 3440, 3329, 3069, 3034, 2930, 2855, 1725, 1655, 1629, 1589, 1498, 1455, 1425, 1391, 1338, 1274, 1262, 1237, 1197, 1146, 1051, 907, 804, 742, 695, 670, 584.

N-2,2-Diphenyl-pent-4-en-1-ylguanidine

8

A 0.16 mmol sample of **1a** was stirred in 1mL TFA for 1h. Then 5 mL Et₂O and 5 mL H₂O were added and the reaction was quenched by addition of Na₂CO₃ until pH≥8 was reached. The mixture was separated and the aqueous phase extracted with Et₂O (3x10 mL). The organic extracts were combined, dried over

MgSO₄ and concentrated to give the free guanidine as analytically pure compound.

¹H NMR (CDCl₃/MeOD, 400MHz): $\delta = 2.90$ (d, J = 6.8 Hz, 2H), 3.80 (s, 2H), 4.98 (dd, J = 1.2, 10.4 Hz, 1H), 5.06 (dd, J = 1.2, 17.2 Hz, 1H), 5.29 (ddd, J = 6.8, 10.4, 17.2 Hz, 1H), 6.83 (br, 1NH), 7.14 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 7.28 (dd, J = 7.6, 8.0 Hz, 2H). ¹³C NMR (CDCl₃/MeOD, 100 MHz): $\delta = 40.94, 47.75, 49.42, 118.73, 126.67, 127.45, 128.28, 133.04, 144.21, 157.45. MS (ESI-LCMS): m/z (%): 280.6 [M+H]⁺ (3), 179.2 (100), 165.2 (98), 91.3 (74). HRMS (MALDI-TOFTOF) calcd for C₁₈H₂₂N₃⁺: 280.1808, found: 280.1790. IR (FT-IR, Ge): <math>v = 3378, 3196, 3096, 3032, 2983, 2961, 2937, 1683, 1658, 1625, 1201, 1181, 1137, 837, 801, 757, 722, 700.$

tert-Butyl 3-(*tert*-butoxycarbonylimino)-6,6-diphenyltetrahydro-1*H*-pyrrolo[1,2-*c*]imidazole-2(3*H*)-carboxylate

2a

Synthesised according to the general diamination procedures using $CuBr_2$ and $CuCl_2$. Isolated as a white solid, respective yields see Schemes 1 and 2.

¹H NMR (400 MHz, CDCl₃): δ = 1.50 (s, 9H), 1.51 (s, 9H), 2.37 (t, *J* = 9.2 Hz, 1H), 2.54 (dd, *J* = 4.8, 11.2 Hz, 1H), 3.52 (d, *J* = 11.2 Hz, 1H), 3.72 (dd, *J* = 7.0, 9.7 Hz, 1H), 3.97 (m, 1H), 4.05 (dd, *J* = 9.7, 9.9 Hz, 1H), 4.46 (d, *J* = 11.2 Hz, 1H), 7.15-7.32 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ = 27.93, 28.01, 43.97, 50.00, 55.86, 57.02, 57.14, 79.18, 82.53, 126.27, 126.49, 126.58, 126.70, 126.78, 128.35, 128.39, 128,47, 145.02, 149.44, 153.76. MS (EI, eV): m/z (%): 477.3 [M]⁺ (4), 421.3 (4), 366.2 (20), 348.2 (40), 322.2 (70), 304.2 (20), 278.2 (16), 222.2 (8), 179.1 (20), 142.1 (12), 128.1 (20), 123.1 (26), 110.1 (18), 98.1 (30), 91.1 (15), 84.1 (10), 57.1 (100). HRMS calcd for C₂₈H₃₅N₃O₄: 477.2628,

found: 477.2632. IR (FT-IR, Ge): v [cm⁻¹] = 3323, 3286, 3026, 3003, 2981, 2931, 1732, 1646, 1616, 1447, 1408, 1354, 1327, 1252, 1142, 1053, 810, 758, 700.

(*E*)-*tert*-Butyl 3-(*tert*-butoxycarbonylimino)-6,6-dimethyltetrahydro-1*H*pyrrolo[1,2-*c*]imidazole-2(3*H*)-carboxylate

Synthesised according to the general diamination procedures using $CuBr_2$ and $CuCl_2$. Isolated as a white solid, respective yields see Schemes 1 and 2.

¹H NMR (400 MHz, CDCl₃): $\delta = 1.10$ (s, 6H), 1.44 (s, 18H), 1.82 (dd, J = 6.0, 12.0 Hz, 1H), 2.98 (d, J = 10.8 Hz, 1H), 3.09 (d, J = 10.8 Hz, 1H), 3.53 (dd, J = 7.2, 10.4 Hz, 1H), 4.02 (dd, J = 8.8, 10.4 Hz, 1H), 4.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 27.54$, 28.63, 28.12, 28.24, 41.56, 46.46, 50.78, 56.92, 59.89, 78.89, 82.43, 149.69, 154.36, 159.64. MS (EI, eV): m/z (%): 354.4 [M]⁺ (10), 298.1 (5), 280.1 (5), 254.1 (10), 242.0 (50), 224.0 (100), 198.1 (95), 180.0 (70), 154.0 (56), 123.0 (16), 110.0 (10), 98.0 (32), 83.0 (6), 57.0 (52). HRMS: calcd for C₁₈H₃₁N₃O₄: 353.2315 found: 353.2310. IR (FT-IR, Ge): v [cm⁻¹] = 3000, 2969, 2958, 2930, 2871, 1737, 1681, 1616, 1382, 1367, 1315, 1260, 1147, 1097.

tert-Butyl 3'-(*tert*-butoxycarbonylimino)tetrahydrospiro[cyclohexane-1,6'pyrrolo[1,2-c]imidazole]-2'(3'*H*)-carboxylate

NBoc NBoc

2c

Synthesised according to the general diamination procedures using $CuBr_2$ and $CuCl_2$. Isolated as a white solid, respective yields see Schemes 1 and 2.

¹H NMR (400 MHz, CDCl₃): δ = 1.39 (s, 9H), 1.40 (s, 9H), 1.2-1.5 (m, 10H), 1.90 (dd, *J* = 5.8, 12.3 Hz, 1H), 2.98 (d, *J* = 11.4 Hz, 1H), 3.13 (d, *J* = 11.7 Hz, 1H), 3.46 (dd, *J* = 6.7, 10.2 Hz, 1H), 3.95 (t, *J* = 11.8 Hz, 1H), 4.03 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 22.7, 23.6, 25.5, 27.8, 27.9, 35.5, 37.3, 44.2, 45.2, 50.5, 55.7, 57.2, 78.5, 82.0, 149.4, 153.9, 159.4. MS (EI, eV): m/z (%): 393.3 [M]⁺ (10), 338.2 (5), 293.2 (5), 282.2 (50), 264.2 (90), 238.2 (100), 220.2 (60), 194.2 (40), 142.1 (20), 138.1 (40), 98.0 (15), 57.1 (30). HRMS calcd for C₂₁H₃₅N₃O₄: 393.2628, found: 393.2623. IR (FT-IR, Ge): v [cm⁻¹] = 2928, 2857, 1737, 1680, 1619, 1383, 1366, 1314, 1267, 1142, 1075, 1004.

Benzyl 3-(benzyloxycarbonylimino)-6,6-diphenyltetrahydro-1*H*-pyrrolo-[1,2-*c*]imidazole-2(3*H*)-carboxylate

Synthesised according to the general diamination procedures using $CuBr_2$ and $CuCl_2$. Isolated as a white solid, respective yields see Schemes 1 and 2.

¹H NMR (400 MHz, CDCl₃): δ = 2.34 (t, *J* = 11.4 Hz, 1H), 2.57 (dd, *J* = 4.7, 11.4 Hz, 1H), 3.41 (d, *J* = 11.4 Hz, 1H), 3.73 (dd, *J* = 7.9, 10.2 Hz, 1H), 3.99 (m, 1H), 4.13 (dd *J* = 8.8, 10.2 Hz, 1H), 4.33 (d, *J* = 11.4 Hz, 1H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.15 (d, *J* = 12.3 Hz, 1H), 5.16 (d, *J* = 12.3 Hz, 1H), 5.25 (d, *J* = 12.3 Hz, 1H), 7.08 (d, *J* = 7.0 Hz, 2H), 7.17-7.21 (m, 4H), 7.24-7.33 (m, 10H), 7.38-7.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 43.88, 50.18, 56.03, 56.58, 57.25, 67.25, 68.17, 126.36, 126.73, 126.90, 127.66, 128.09, 128.15, 128.20, 128.26, 128.45, 128.49, 128.57, 135.18, 136.79, 144.69, 144.95, 150.96, 153.95, 159.93. MS (ESI-LCMS): m/z: 568.2 (M+Na), 546.3 (M+H), 520.3, 478.2, 435.2, 412.2, 368.2. HRMS (ESI-MicroTOF) calcd for C₃₄H₃₂N₃O₄⁺: 546.2393, found: 546.3284. IR (FT-IR, Ge): v [cm⁻¹] = 2960, 2927, 1781, 1718, 1651, 1496, 1450, 1389, 1335, 1297, 1259, 1217, 1162, 1126, 1083, 913, 803, 757.

Benzyl 3-(benzyloxycarbonylimino)-6,6-dimethyltetrahydro-1*H*-pyrrolo[1,2c]imidazole-2(3*H*)-carboxylate

NCbz NCbz

2e

Synthesised according to the general diamination procedures using $CuBr_2$ and $CuCl_2$. Isolated as a white solid, respective yields see Schemes 1 and 2.

¹H NMR (400 MHz, CDCl₃): δ = 1.11 (s, 3H), 1.12 (s, 3H), 1.43 (dd, *J* = 9.2, 12.1 Hz, 1H), 1.88 (dd, *J* = 5.6, 12.1 Hz, 1H), 2.93 (d, *J* = 11.2 Hz, 1H), 3.06 (d, *J* = 11.2 Hz, 1H), 3.06 (d, *J* = 7.0, 9.3 Hz, 1H), 4.17 (pst, *J* = 9.0 Hz, 1H), 4.23 (m, 1H), 5.16 (d, *J* = 12.4 Hz, 1H), 5.26 (d, *J* = 12.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 27.3, 27.4, 41.6, 46.0, 50.7, 56.9, 59.4, 67.1, 68.0, 127.6, 128.0, 128.1, 128.2, 128.2, 128.4, 135.2, 136.8, 151.0, 154.0, 159.8. MS (EI, eV): m/z (%): 421.2 [M]⁺ (44), 314.2 (10), 287.2 (52), 270.2 (18), 231.1 (4), 224.1 (30), 180.1 (28), 153.1 (20), 123.0 (4), 91.0 (100), 65.1 (4), 55.1 (6). HRMS calcd for C₂₄H₂₇N₃O₄: 421.2002, found: 421.2006. IR (FT-IR, Ge): v [cm⁻¹] = 3365, 3065, 3034, 2959, 2894, 1786, 1751, 1720, 1642, 1599, 1458, 1390, 1339, 1299, 1262, 1170, 1107, 1012, 802, 737.

Benzyl 3'-(benzyloxycarbonylimino)tetrahydrospiro[cyclohexane-1,6'pyrrolo[1,2-c]imidazole]-2'(3'*H*)-carboxylate

2f

Synthesised according to the general diamination procedures using $CuBr_2$ and $CuCl_2$. Isolated as a white solid, respective yields see Schemes 1 and 2.

¹H NMR (400 MHz, CDCl₃): δ = 1.18-1.41 (m, 11 H), 1.92 (dd, *J* = 5.2, 12.4 Hz, 1H), 2.88 (d, *J* = 11.6 Hz, 1H), 3.06 (d, *J* = 11.6 Hz, 1H), 3.55 (td, *J* = 8.0, 11.2 Hz, 1H), 4.06 (m, 2H), 5.00 (d, *J* = 12.4 Hz, 1H), 5.04 (d, *J* = 12.4 Hz, 1H), 5.06 (d, *J* = 12.4 Hz, 1H), 5.14 (d *J* = 12.4 Hz, 1H), 7.17-7.34 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ = 22.68, 23.58, 25.49, 35.59, 37.34, 43.89, 45.58, 50.75, 56.15, 57.16, 67.08, 68.03, 127.57, 128.00, 128.10, 128.17, 128.39, 135.20, 136.87, 151.01, 153.98, 159.89. MS (ESI, eV): m/z: 945.5(2M+H), 812.4, 484.2(M+Na), 462.2(M+H), 328.2, 304.3, 227.0. HRMS calcd for C₂₇H₃₁N₃O₄Na⁺: 483.2217, found: 483.2211.IR (FT-IR, Ge): v [cm⁻¹] = 2925, 2853, 1753, 1720, 1618, 1451, 1394, 1297, 1258, 1165, 1125, 1085, 744.

tert-Butyl 6,6-dimethyl-3-oxohexahydroimidazo[1,5-*a*]pyridine-2(1*H*)carboxylate

NBoc 4

Synthesised according to general diamination conditions using CuBr₂. Isolated in 85% as a white solid.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.93$ (s, 6H), 0.96 (m, 1H), 1.34 (dd, J = 3.6, 14.4 Hz, 1H), 1.43 (m, 1H), 1.50 (s, 9H), 1.68 (m, 1H), 2.43 (d, J = 13.2 Hz, 1H), 3.33 (m, 2H), 3.54 (dd, J = 2.0, 13.2 Hz, 1H), 3.89 (td, J = 11.6 Hz, 4.4 Hz, 1H), 7.93 (br, 1NH). ¹³C NMR (100 MHz, CDCl₃): $\delta = 23.29$, 27.74, 28.10, 28.24, 28.68, 30.13, 36.61, 47.38, 50.57, 51.41, 56.11, 82.00, 151.00, 153.09. MS (EI, eV): m/z (%): 268.2 [M]⁺ (20), 253.2 (2), 212.1 (3), 195.1 (18), 168.1 (100), 153.1 (6), 139.1 (2), 125.1 (2), 112.0 (8), 99.0 (48), 85.0 (4), 69.1 (2), 57.1 (34). HRMS calcd C₁₄H₂₄N₂O₃: 268,1787 found: 268.1783. IR (FT-IR, Ge): v [cm⁻¹] = 2961, 1754, 1436, 1360, 1338, 1268, 1170, 1116, 1084, 1008, 772.

tert-Butyl 3-(*tert*-butoxycarbonylimino)-6,6-diphenylhexahydroimidazo-[1,5-*a*]pyridine-2(1*H*)-carboxylate

NBoc Ph NBoc Ph

5a

Synthesised according to the general diamination procedure using CuCl₂. Isolated as a white solid, respective yields see Scheme 2.

¹H NMR (CDCI₃, 400 MHz) δ = 1.47 (s, 9H), 1.50 (m, 1), 1.57 (s, 9H), 1.91 (dq, *J* = 3.2, 13.2 Hz, 1H), 2.32 (dt, *J* = 2.6, 13.2 Hz, 1H), 2.66 (dq, *J* = 2.9, 13.8 Hz, 1H), 2.82 (d, *J* = 14 Hz, 1H), 3.23 (t, *J* = 10.2 Hz, 1H), 3.59-3.69 (m, 1H), 4.05 (dd, *J* = 8.2, 10.2 Hz, 1H), 4.92 (dd, *J* = 2.1, 14.0 Hz, 1H). ¹³C NMR (CDCI₃, 100 MHz) δ = 26.71, 28.03, 28.27, 33.68, 45.71, 49.64, 50.78, 53.10, 78.78, 82.32, 126.07, 126.51, 126.60, 127.64, 128.29, 128.57, 143.74, 146.45, 149.87, 150.45, 159.12. MS (EI, eV): m/z (%): 491.2 (40), 435.2 (25), 391.2 (40), 362.1 (100), 335.1 (70), 318.1 (40), 291.1 (50), 180.1 (40), 165.0 (25), 142.0 (15), 124.0 (60), 98.0 (20), 91.0 (15), 57.1 (30). HRMS calcd for C₂₉H₃₇N₃O₄: 491.2784, found: 491.2791. IR (FT-IR, Ge): v [cm⁻¹] = 3061, 2975, 2929, 2865, 1750, 1679, 1617, 1450, 1368, 1274, 1142, 800.

tert-Butyl 3-(*tert*-butoxycarbonylimino)-6,6-dimethylhexahydroimidazo-[1,5-*a*]pyridine-2(1*H*)-carboxylate

5b

Synthesised according to the general diamination procedure using $CuCl_2$. Isolated as a white solid, respective yields see Scheme 2.

¹H NMR (400 MHz, CDCl₃): δ = 0.90 (s, 3H), 0.91 (s, 3H), 1.28 (m, 1H), 1.44 (s, 9H), 1.46 (s, 9H), 1.45 (m, 2H), 1.71 (dd, *J* = 3.6 Hz, 12.8 Hz, 1H), 2.41 (d, *J* = 12.8 Hz, 1H), 3.37 (m, 2H), 3.68 (dd, *J* = 1.6 Hz, 12.8 Hz, 1H), 4.01 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ = 23.20, 27.13, 27.91, 28.14, 28.55, 29.98, 36.29, 50.68, 52.36, 53.27, 78.51, 82.12, 149.97, 151.21, 159.28. MS (EI, eV): m/z (%) = 368.5 [M]⁺ (1), 312.4 (4), 255.9 (1), 212.2 (100), 168.2 (35). HRMS calcd for $C_{19}H_{33}N_3O_4$: 367.2471, found: 367.2479. IR (FT-IR, Ge): v [cm⁻¹] = 2961, 2930, 1752, 1700, 1434, 1392, 1361, 1269, 1250, 1160, 1117, 1082, 1050, 1025, 1008, 854, 773.

tert-Butyl 3'-(*tert*-butoxycarbonylimino)tetrahydro-1'*H*-spiro[cyclohexane-1,6'-imidazo[1,5-*a*]pyridine]-2'(3'*H*)-carboxylate

5c

Synthesised according to the general diamination procedure using $CuCl_2$. Isolated as a white solid, respective yields see Scheme 2.

¹H NMR (CDCl₃, 400 MHz) δ = 1.12-1.54 (m, 12H), 1.45 (s, 9H), 1.47 (s, 9H), 1.65-1.72 (m, 2H), 2.31 (d, *J* = 13.2 Hz, 1H), 3.35-3.46 (m, 2H), 3.97-4.05 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ = 21.24, 21.35, 26.35, 26.49, 28.00, 30.65, 32.57, 34.20, 37.88, 50.12, 50.72, 53.51, 78.42, 82.14, 149.99, 151.38, 159.21. MS (EI, eV): m/z (%): 408.3 [M]⁺ (10), 407.2 (25), 351.2 (25), 295.1 (55), 278.1 (100), 251.1 (75), 208.1 (25), 206.1 (20), 143.0 (20), 57.1 (20). HRMS calcd for C₂₂H₃₈N₃O₄⁺: 408.2857, found: 408.2865. IR (FT-IR, Ge): v [cm⁻¹] = 2973, 2927, 2847, 1774, 1741, 1706, 1678, 1619, 1450, 1363, 1259, 1160, 1104, 1012, 855, 769.

Benzyl 3-(benzyloxycarbonylimino)-6,6-diphenylhexahydroimidazo[1,5-*a*]pyridine-2(1*H*)-carboxylate

NCbz NCbz Ph

5d

Synthesised according to the general diamination procedure using CuCl₂. Isolated as a white solid, respective yields see Scheme 2.

¹H NMR (400 MHz, CDCl₃): δ = 1.20 (ddd, *J* = 2.4 Hz, 12.4, 13.6 Hz, 1H), 1.90 (qd, *J* = 3.2 Hz, 13.6 Hz, 1H), 2.32 (dt, *J* = 3.2 Hz, 13.6 Hz, 1H), 2.69 (qd, *J* = 2.8 Hz, 12.4 Hz, 1H), 2.88 (d, *J* = 14.0 Hz, 1H), 3.32 (t, *J* = 10.4 Hz, 1H), 3.66 (m, 1H), 4.16 (dd, *J* = 8.4 Hz, 10.4 Hz, 1H), 4.95 (dd, 2.4 Hz, 14.0 Hz, 1H), 5.07 (d, *J* = 12.0 Hz, 1H), 5.10 (d, *J* = 12.0 Hz, 1H), 5.16 (d, *J* = 12.0 Hz, 1H), 5.19 (d, *J* = 12.0 Hz, 1H), 7.13- 7.45 (m, 20H). ¹³C NMR (100 MHz, CDCl₃): δ = 26.72, 33.52, 45.73, 49.67, 50.48, 52.98, 67.23, 68.20, 126.16, 126.38, 126.56, 127.40, 127.55, 128.16, 128.21, 128.36, 128.42, 128.47, 128.63, 135.03, 137.06, 143.35, 146.16, 149.95, 151.13, 159.44. MS (EI, eV): m/z (%): 560.5 [M]⁺ (100), 516.5 (28), 473.4 (12), 452.3 (10), 408.3 (4), 380.3 (4), 91.3 (11). HRMS calcd for C₃₅H₃₃N₃O₄: 559.2471, found: 559.2470. IR (FT-IR, Ge): v [cm⁻¹] = 3064, 2948, 2886, 1761, 1669, 1613, 1487, 1403, 1269, 1190, 1165, 1147, 1116, 1099, 1041, 736.

Benzyl 3-(benzyloxycarbonylimino)-6,6-dimethylhexahydroimidazo-[1,5-*a*]pyridine-2(1*H*)-carboxylate

5e

Synthesised according to the general diamination procedure using $CuCl_2$. Isolated as a white solid, respective yields see Scheme 2.

¹H NMR (CDCl₃, 400 MHz) δ = 0.86 (s, 3H), 0.87 (s, 3H), 1.25 (dd, *J* = 10.8, 14.4 Hz, 1H), 1.44 (ddd, *J* = 3.6, 10.8, 14.0 Hz, 2H), 1.68 (m, 1H), 2.39 (d, *J* = 13.2 Hz, 1H), 3.37 (m, 1H), 3.42 (dd, *J* = 8.4, 10.0 Hz, 1H), 3.63 (dd, *J* = 1.6, 12.8 Hz, 1H), 4.06 (dd, *J* = 8.0, 9.6 Hz, 1H), 4.97 (s, 2H), 5.02 (d, *J* = 12.0 Hz, 1H), 5.09 (d, *J* = 12.0 Hz, 1H), 7.15-7.31 (m, 10H). ¹³C NMR (CDCl₃, 100 MHz) δ = 23.16, 27.20, 28.53, 30.09, 36.13, 50.39, 52.50, 53.10, 67.12, 68.14, 127.44, 128.05, 128.19, 128.29, 128.34, 128.43, 135.09, 137.04, 150.80, 151.29, 159.64. MS (EI, 120 Hz, 120

eV): m/z (%) = 435.2 [M]⁺ (4), 302.2 (60), 257.2 (5), 195.1 (7), 168.1 (100), 151.1 (12), 108.0 (24), 91.0 (77), 79.0 (11), 65.0 (6). HRMS calcd for $C_{25}H_{29}N_3O_4$: 435.2158, found: 435.2163. IR (FT-IR, Ge): v [cm⁻¹] = 3035, 2950, 1759, 1674, 1622, 1454, 1400, 1337, 1268, 1219, 1177, 1154, 1115, 1042, 753, 733, 711.

Benzyl 3'-(benzyloxycarbonylimino)tetrahydro-1'*H*-spiro[cyclohexane-1,6'imidazo[1,5-*a*]pyridine]-2'(3'*H*)-carboxylate

5f

Synthesised according to the general diamination procedure using $CuCl_2$. Isolated as a white solid, respective yields see Scheme 2.

¹H NMR (CDCl₃, 400 MHz) δ = 1.09-1.51 (m, 12H), 1.64 (dt, *J* = 2.8, 14.3 Hz, 2H), 2.28 (d, *J* = 13.5 Hz, 1H), 3.38-3.46 (m, 2H), 3.97-4.09 (m, 2H), 4.97 (s, 2H), 5.00 (d, *J* = 12.3 Hz, 1H), 5.09 (d, *J* = 12.3 Hz, 1H), 7.14-7.32 (m, 10H). ¹³C NMR (CDCl₃, 100 MHz) δ = 21.28, 21.42, 26.31, 26.57, 30.67, 32.68, 34.33, 37.89, 50.05, 50.50, 53.49, 67.15, 68.20, 127.47, 128.11, 128.20, 128.37, 128.40, 128.50, 135.19, 137.20, 150.94, 151.38, 159.72. MS (ESI-LCMS): m/z (%): 476 [M+H]⁺ (100). HRMS (MALDI-TOFTOF) calcd for C₂₈H₃₄N₃O₄⁺: 476.2544, found: 476.2501. IR (FT-IR, Ge): v [cm⁻¹] = 2926, 2850, 1761, 1671, 1617, 1452, 1400, 1267, 1175, 1156, 1109, 1042, 753.

Deprotection procedures

Tetrahydro-1'*H*-spiro[cyclohexane-1,6'-pyrrolo[1,2-c]imidazole]-2'(3'*H*)imine hydrotrifluoroacetate

The N,N'-bis-Boc protected guanidine **2c** (0.15 mmol) is treated with trifluoroacetic acid (1 mL) in dichloromethane (1 mL) and stirred for 60 min at room temperature. The solution is then concentrated under reduced pressure to yield the analytically pure deprotected guanidine in 99% yield.

¹H NMR (400 MHz, CDCl₃): δ = 1.36-1.61 (m, 11H), 2.05 (dd, *J* = 6.1, 12.6 Hz, 1H), 3.15 (d, *J* = 11.1 Hz, 1H), 3.22 (d, *J* = 11.1 Hz, 1H), 3.53 (dd, *J* = 4.1, 9.1 Hz, 1H), 3.87 (pst, *J* = 9.3 Hz, 1H), 4.28 (m, 1H), 6.5-7.7 (br, 2NH), 8.46 (s, 1NH). ¹³C NMR (100 MHz, CDCl₃): δ = 22.86, 23.62, 25.44, 35.60, 37.63, 43.09, 45.90, 47.39, 57.36, 60.98, 161.59 (TFA anion not detected).

Tetrahydro-1'H-spiro[cyclohexane-1,6'-imidazo[1,5-a]pyridin]-3'(2'H)-imine hydrotrifluoroacetate

The N,N'-bis-Boc protected guanidine **5c** (0.5 mmol) is treated with neat trifluoroacetic acid (1 mL) and stirred for 30 min at room temperature. Diethyl ether (10 mL) is added and the reaction is quenched by careful addition of solid

 Na_2CO_3 . When the CO_2 evolution ceases, 10 mL of H_2O are added and the addition of Na_2CO_3 is continued until pH = 11. The organic layer is separated and the aqueous phase is extracted with diethyl ether (3 x 15 mL), dried and concentrated under reduced pressure to yield the analytically pure deprotected guanidine in 99% yield.

¹H NMR (400 MHz, CDCl₃): δ = 1.20-1.50 (m, 11H), 1.91 (m, 2H), 1.86 (d, *J* = 14.0 Hz, 1H), 2.62 (d, *J* = 13.6 Hz, 1H), 3.23 (dd, *J* = 6.4, 8.8 Hz, 1H), 3.69 (m, 1H), 3.72 (d, *J* = 14.0 Hz, 1H), 3.77 (d, *J* = 8.8 Hz, 1H), 7.76 (br, 2NH), 8.53 (br, 1NH). ¹³C NMR (100 MHz, CDCl₃): δ = 21.05, 21.31, 25.84, 26.22, 30.55, 33.04, 33.25, 37.34, 47.33, 50.99, 58.37, 158.00 (TFA anion not detected). MS (ESI-LCMS): m/z (%): 208.3 (100), 84.1 (8). HRMS (MALDI-TOFTOF) calcd for C₁₂H₂₂N₃⁺: 208.1808, found: 208.1824. IR (FT-IR, Ge): v [cm⁻¹] = 3355, 2931, 2853, 1668, 1579, 1452, 1202, 1133, 836, 801, 720.

Aminochlorination and Aminoacetoxylation Procedures

2-(Chloromethyl)-4,4-diphenylpyrrolidine-1-carboximidamide

9

Synthesised under the conditions of the general diamination procedure for guanidines using CuCl₂ as oxidant.

¹H NMR (MeOH-d₄, 400 MHz): $\delta = 2.78$ (dd, J = 8.8, 12.8 Hz, 1H), 2.95 (ddd, J = 1.6, 6.8, 12.8 Hz, 1H), 3.59 (dd, J = 2.0, 11.6 Hz, 1H), 3.83 (m, 2H), 4.14 (ddd, J = 2.0, 6.8, 12.4 Hz, 1H), 4.40 (dd, J = 1.6, 10.8 Hz, 1H), 7.10-7.26 (m, 10H). ¹³C NMR (MeOH-d₄, 100 MHz): $\delta = 40.47$, 43.55, 52.58, 56.81, 57.84, 125.65, 126.16, 126.71, 128.16, 128.51, 128.65, 143.33, 143.63, 155.02. MS (ESI-LCMS): m/z (%): 314.3 [M+H]⁺ (63), 196.2 (27), 91.5 (27), 78.39 (100). HRMS (MALDI-TOFTOF) calcd for C₁₈H₂₁ClN₃⁺: 314.1419, found: 314.1435. IR (FT-IR,

Ge): v [cm⁻¹] = 3351, 3168, 2957, 2936, 1660, 612, 1497, 1437, 1388, 1202, 1180, 1132, 802, 730.

(1-(*N*,*N*'-bis(*tert*-Butoxycarbonyl)carbamimidoyl)-4,4-diphenylpyrrolidin-2yl)methyl ethanoate

A solution of the precursor **1a** (0.45 mmol, 1.0 eq.), oxidant (0.90 mmol, 2.0 eq.), sodium acetate (0.45 mmol, 1.0 eq.) and $Pd(OAC)_2$ (0.045 mmol, 10% mol) in CH_2CI_2 (4.5 mL) was stirred overnight at room temperature. The reaction was quenched by addition of sat. aqueous $Na_2S_2O_3$ solution, the organic phase was separated and the aqueous phase extracted with dichloromethane several times. The combined organic layers were dried over $MgSO_4$ and the solvent was removed under reduced pressure. The product was purified by flash-chromatography on silica gel (dichloromethane) to give compound **10** in 90% yield.

¹H NMR (400 MHz, CDCl₃): δ = 1.41 (s, 18H), 1.99 (s, 3H), 2.56 (dd, *J* = 10.4, 12.0 Hz, 1H), 2.71 (ddd, *J* = 1.6, 6.8, 12.4 Hz, 1H), 3.92 (d, *J* = 12.0 Hz, 4.18 (t, *J* = 10.4 Hz), 4.33 (br, 1H), 4.53 (br, 1H), 7.05-7.23 (10H). ¹³C NMR (100 MHz, CDCl₃): δ = 20.90, 28.11, 52.61, 56.32, 59.66, 63.04, 79.20, 81.96, 126.26, 126.59, 126.65, 126.65, 128.54, 128.69, 143.97, 145.01, 150.31, 154.01, 170.96. MS (EI, eV): m/z (%): 537.4 [M]⁺(18), 477.4 (20), 425.3 (3), 408.3 (5), 390.3 (2), 381.3 (10), 363.3 (12), 347.2 (2), 338.2 (5), 320.2 (10), 290.2 (30), 276.2 (4), 260.2 (40), 222.2 (30), 205.2 (45), 192.1 (13), 180.1 (25), 165.1 (20), 144.1 (12), 141.1 (20), 123.1 (20), 97.1 (8), 91.1 (22), 69.1 (5), 59.1 (100), 56.1 (58). HRMS calcd for C₃₀H₃₉N₃O₆: 537.2839, found: 537.2847. IR (FT-IR, Ge): v [cm⁻¹] =

3055, 3028, 3009, 2978, 2931, 2899, 1745, 1636, 1611, 1419, 1367, 1295, 1233, 1141, 1116, 1061.

Stereochemical Analysis

Synthesis of labelled compound (*E***)-1a-d**₁**:** Selectively deuterated guanidine (*E***)-1a-d**₁[,] was prepared according to the general procedure for starting material synthesis using selectively labelled allylic bromide.⁴ The latter was obtained following a literature procedure using Schwartz reagent. The labelled allylic bromide was used as described before to obtain the guanidines.

(*E*)-1a-d₁

90% Deuteration grade.

¹H NMR (400 MHz, CDCl₃): δ = 1.42 (s, 9H), 1.49 (s, 9H, 2.92 (dd, *J* = 1.2, 7.2 Hz, 2H), 4.10 (d, *J* = 4.8 Hz, 2H), 5.00 (dd, *J* = 1.6, 17.2 Hz, 1H), 5.42 (td, *J* = 7.2, 17.2 Hz, 1H), 7.18-7.33 (m, 10H), 8.23 (t, *J* = 4.8 Hz, 1NH). ¹³C NMR (100 MHz, CDCL3): δ = 27.83, 28.17, 41.92, 47.75, 49.87, 78.94, 82.64, 118.20 (t, *J* = 25.0 Hz), 126.33, 128.00, 128.02, 133.37, 144.99, 152.70, 156.17. IR (FT-IR, Ge): v = 3305, 2980, 2935, 1786, 1726, 1634, 1560, 1415, 1367, 1324, 1136, 1057, 814, 756, 701.

26

Deuterated compound (*E*)-1a-d₁ underwent clean diamination to a single diastereomeric product. From the coupling constant of the resulting isomer of **2a**- d_1 the relative *syn*-configuration could be unambiguously determined.

2a-u1

¹H NMR (400 MHz, CDCl₃): δ = 1.41 (s, 9H), 1.42 (s, 9H), 2.24 (dd, *J* = 10.4, 11.2 Hz, 1H), 2.44 (dd, *J* = 4.8, 11.2 Hz, 1H), 3.41 (d, *J* = 11.2 Hz, 1H), 3.87 (ddd, *J* = 4.8 Hz, 9.2 Hz, 10.4 Hz, 1H), 3.94 (d, *J_{syn}* = 9.2 Hz, 1H), 4.35 (d, *J* = 11.2 Hz, 1H), 7.06-7.24 (m, 10H). ¹³C NMR (100 MHz, CDCl₃): δ = 27.97, 28.05, 44.03, 49.66 (t, *J* = 21.5 Hz), 55.63, 56.98, 57.14, 78.99, 82.40, 126.27, 126.60, 126.74, 126.80, 128.41, 128.51, 145.15, 145.35, 149.45, 153.82, 159.66. MS (ESI-LCMS): m/z (%): 479.3 [M+H]⁺ (1), 423.4 (5), 367.3 (22), 323.4 (100), 297.3 (5), 279.3 (67), 237.2 (5). IR (FT-IR, Ge): v [cm⁻¹] = 2966, 2930, 1748, 1635, 1559, 1451, 1368, 1255, 1128, 847, 771.

Data on X-Ray Structure Determination

Compound 5d:

 Table S-1.
 Crystal data and structure refinement for 5d.

Identification code	streuff1
Empirical formula	C33 H33 N3 O4
Formula weight	559.64
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 9.9630(5)A alpha = 89.717(3) deg. b = 10.0620(5)A beta = 76.596(3)deg. c = 15.7850(5)A gamma = 67.802(2)deg
Volume	1419.21(11)A^3
Z, Calculated density	2, 1.310 Mg/m^3
F(000)	592

Crystal size	0.40 x 0.35 x 0.30 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	1.33 to 27.50 deg.
Reflections collected / unique	9485 / 6465 [R(int) = 0.0218]
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6465 / 0 / 388
Goodness-of-fit on F^2	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0480, wR2 = 0.1300
R indices (all data)	R1 = 0.0755, wR2 = 0.1162

Compound 7:

 Table S-1.
 Crystal data and structure refinement for 7.

Identification code	streuff6
Empirical formula	C14 H22 F3 N3 O2
Formula weight	321.35
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P21/c
Unit cell dimensions	a = 13.8901(9)A b = 5.9564(2) beta = 120.178(3)deg. c = 22.1517(11)A
Volume	1584.33(14)A^3

Z, Calculated density	4, 1.347 Mg/m^3
Absorption coefficient	0.114 mm^-1
Absorption coefficient	0.086 mm^-1
F(000)	680
Crystal size	0.30 x 0.20 x 0.10 mm
Diffractometer	Nonius KappaCCD
Theta range for data collection	1.70 to 27.54 deg.
Reflections collected / unique	9509 / 3631 [R(int) = 0.0515]
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3631 / 0 / 208
Goodness-of-fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0710, wR2 = 0.2096
R indices (all data)	R1 = 0.1240, wR2 = 0.1798

Spectral Reproduction of Starting Materials and Products

¹J. A. Castillo-Meléndez, B. T. Golding *Synthesis* 2004, **10**, 1655 ² K. Feichtinger, H. L. Sings, T. J. Baker, K. Matthews, M. Goodman *J. Org. Chem.* 1998**, 63**, 8432

¹598, **03**, 8432
³ For a general synthesis of these amines see: Y. Tamaru, M. Hojo, H. Higashimura, Z.-I. Yoshida *J. Am. Chem. Soc.* 1988, **110**, 3994.
⁴ D. Orain, J.-C. Guillemin *J. Org. Chem.* 1999, **64**, 3563.