Three-Component Solvent-Free Synthesis of Highly Substituted Bicyclic Pyridines Containing a Ring-Junction Nitrogen

Shengjiao Yan[†], Yulan Chen[†], Lin Liu, Nengqin He, Jun Lin^{*}

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents

General Information	3
General Procedure for the Preparation of Bicyclic Pyridines 4 via One-pot Three-com	ponent
Reactions	3
Spectroscopic Data of Bicyclic Pyridines 4	4
General Procedure for the Preparation of Bicyclic Pyridinone (-imine) 6 via C)ne-pot
Three-component Reactions	13
Spectroscopic Data of Bicyclic Pyridinone (-imine) 6	14
Anti-cancer activities of compounds 4	17
X-ray Structure and Data of 4m	18
¹ H NMR and ¹³ C NMR Spectra for Bicyclic Pyridines 4 , 6	25
Figure 1. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4a	26
Figure 2. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4a	27
Figure 3. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4b	28
Figure 4. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4b	29
Figure 5. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4c	30
Figure 6. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4c	31
Figure 7. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4d	32
Figure 8. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4d	33
Figure 9. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4e	34
Figure 10. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4e	35
Figure 11. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4f	36
Figure 12. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4f	37
Figure 13. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4g	38
Figure 14. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4g	39

^{*} Corresponding author. Tel.: 0086-871-5033215; fax: 0086-871-5033215; e-mail: linjun@ynu.edu.cn.

[†] These authors contributed equally to this paper

Figure 15.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4h	40
Figure 16.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4h	41
Figure 17.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4i	42
Figure 18.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4i	43
Figure 19.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4j	44
Figure 20.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4j	45
Figure 21.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4k	46
Figure 22.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4k	47
Figure 23.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 41	48
Figure 24.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 41	49
Figure 25.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4m	50
Figure 26.	13 C NMR (125 MHz, CDCl ₃) spectra of compound 4m	51
Figure 27.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4n	52
Figure 28.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4n	53
Figure 29.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 40	54
Figure 30.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 40	55
Figure 31.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4p	56
Figure 32.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4p	57
Figure 33.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4q	
Figure 34.	13 C NMR (125 MHz, CDCl ₃) spectra of compound 4q	59
Figure 35.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4r	60
Figure 36.	13 C NMR (125 MHz, CDCl ₃) spectra of compound 4r	61
Figure 37.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4s	62
Figure 38.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4s	63
Figure 39.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4t	64
Figure 40.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4t	65
Figure 41.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4u	66
Figure 42.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4u	67
Figure 43.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 4v	68
Figure 44.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 4v	69
Figure 45.	¹ H NMR (500 MHz, CDCl ₃) spectra of compound 6a	70
Figure 46.	¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 6a	71
Figure 47.	¹ H NMR (500 MHz, CH ₃ OD+DMSO- d_6) spectra of compound 6b	72
Figure 48.	¹³ C NMR (125 MHz, CH ₃ OD+DMSO- d_6) spectra of compound 6b	73
Figure 49.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 6c	74
Figure 50.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 6c	75
Figure 51.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 6d	76
Figure 52.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 6d	77
Figure 53.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 6e	78
Figure 54.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 6e	79
Figure 55.	¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 6f	80
Figure 56.	¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 6f	81
References	and Notes	82

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, CDCl₃ and DMSO-*d*₆ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agllent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

The raw materials $1a \sim 1w$ were synthesized according to the literature.¹⁻⁴

4,4,4-trifluoro-3-oxo-butanoate **3a** is lower acute toxicity ($LD_{50}=1260 \text{ mg/kg}$) in the mice tested according to the literature.⁵ Safety phrases of **3a** is S61 (Avoid release to the environment) in the safety description; Diethyl malonate **5a** is lower acute toxicity (ORL-RAT $LD_{50}=15000 \text{ mg/kg}$, ORL-MUS $LD_{50}=6400 \text{mg/kg}$); Safety phrases of Ethyl 2-cyanoacetate **5b** is S23-26-37 in the safety description.

HKAs 1 (2.5mmol), triethoxymethane 2 (3 mmol) and ethyl 4,4,4-trifluoro-3 -oxobutanoate 3 (3mmol) were charged into a 25 mL round-bottom flask and the mixture was refluxed. The resulting solution was stirred for 0.5–1 h until the HKAs 1 were completely consumed. The mixture was diluted with EtOAc (50 mL x 2) and quenched with water (50 mL). The organic layer was dried by Na₂SO₄, concentrated, and purified by flash column chromatography (Petro/AcOEt = 6/1) to afford product 4 with 78-94% yield.

Spectroscopic Data of Bicyclic Pyridines 4

Ethyl 5-hydroxy-8-nitro-5-(trifluoromethyl)-1,2,3,5-tetrahydroimidazo[1,2-*a*] pyridine-6-carboxylate (4a)

Yellow solid; Mp 187–192 °C; IR (KBr): 3358, 3086, 1675, 1597, 1460, 1385, 1207, 1078, 763 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.35$ (t, J = 7.1 Hz, 3H, CH₃), 3.92–4.16 (m, 4H, NCH₂CH₂N), 4.28–4.30 (m, 2H, OCH₂), 7.74 (s, 1H, CH), 8.32 (br, 1H, OH), 8.36 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): $\delta = 14.5$, 43.9, 44.8, 62.2, 84.5 (d, J = 35.0 Hz), 101.5, 108.9, 124.4 (d, J = 292.5 Hz), 135.6, 155.2, 168.2; HRMS (TOF ES⁺): m/z calcd for C₁₁H₁₃F₃N₃O₅ [(M+H)⁺], 324.0802; found, 324.0804.

Ethyl 8-acetyl-5-hydroxy-5-(trifluoromethyl)-1,2,3,5-tetrahydroimidazo[1,2-*a*] pyridine-6-carboxylate (4b)

White solid; Mp 107–108 °C; IR (KBr): 3347, 2990, 1664, 1586, 1497, 1388, 1210, 1114 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.35 (t, *J* = 7.1 Hz, 3H, CH₃), 2.25 (s, 3H, COCH₃), 3.81–4.00 (m, 4H, NCH₂CH₂N), 4.25–4.29 (m, 2H, OCH₂), 7.81 (s, 1H, CH), 7.95 (br, 1H, OH), 9.05 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.7, 25.4, 43.6, 43.6, 61.2, 84.3 (d, *J* = 32.5 Hz), 92.4, 96.9, 125.0 (d, *J* = 293.8 Hz), 141.9, 159.3, 168.8, 192.6; HRMS (TOF ES⁺): *m*/*z* C₁₃H₁₆F₃N₂O₄ [(M+H)⁺], 321.1057; found, 321.1058.

Ethyl 8-benzoyl-5-hydroxy-5-(trifluoromethyl)-1,2,3,5-tetrahydroimidazo[1,2-*a*] pyridine-6-carboxylate (4c)

White solid; Mp 163–166 °C; IR (KBr): 3294, 2987, 1662, 1591, 1499, 1089, 1025, 752, 706 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.21$ (t, J = 7.0 Hz, 3H, CH₃), 3.80–4.10 (m, 4H, NCH₂CH₂N), 4.11–4.18 (m, 2H, OCH₂), 7.42–7.54 (m, 5H, PhH), 7.84 (s, 1H, CH), 7.92 (br, 1H, OH), 9.33 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): $\delta = 14.5$, 43.8, 44.2, 61.2, 84.2 (d, J = 33.8 Hz), 91.7, 97.3, 125.1 (d, J = 295.0 Hz), 128.6, 128.7, 131.0, 139.7, 143.6, 160.4, 168.8, 191.0; HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₈F₃N₂O₄ [(M+H)⁺], 383.1213; found, 383.1216.

Ethyl 5-hydroxy-8-(4-methylbenzoyl)-5-(trifluoromethyl)-1,2,3,5-tetrahydroimidazo[1,2-*a*]pyridine-6-carboxylate (4d)

White solid; Mp 168–171 °C; IR (KBr): 3322, 2977, 1656, 1582, 1498, 1401, 1309, 1083, 766 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.25 (t, *J* = 7.0 Hz, 3H, CH₃), 2.44 (s, 3H, ArCH₃), 3.85–4.19 (m, 4H, NCH₂CH₂N), 4.08–4.22 (m, 2H, OCH₂), 7.27 (t, *J* = 7.6 Hz, 2H, ArH), 7.47 (d, *J* = 7.6 Hz, 2H, ArH), 7.90 (s, 1H, CH), 7.97 (br, 1H, OH), 9.34 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 21.9, 43.8, 43.8, 61.2, 84.2 (d, *J* = 33.8 Hz), 91.7, 97.1, 125.6 (d, *J* = 295.0 Hz), 128.9, 129.3, 136.9, 141.4, 143.7, 160.5, 168.9, 191.0; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₂₀F₃N₂O₄ [(M+H)⁺], 397.1370; found, 397.1372.

Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-5-(trifluoromethyl)-1,2,3,5-tetrahydroimidazo[1,2-*a*]pyridine-6-carboxylate (4e)

White solid; Mp 1801–185 °C; IR (KBr): 3288, 2987, 1654, 1594, 1400, 1253, 1170, 1088, 843 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.24 (t, *J* = 7.1 Hz, 3H, CH₃), 3.89 (s, 3H, OCH₃), 3.88–4.07 (m, 4H, NCH₂CH₂N), 4.19 (q, *J* = 7.1 Hz, 2H, OCH₂), 6.95 (d, *J* = 8.5 Hz, 2H, ArH), 7.54 (d, *J* = 8.5 Hz, 2H, ArH), 7.88 (s, 1H, CH), 7.97 (br,

1H, OH), 9.28 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 43.5, 43.8, 55.8, 61.1, 84.2 (d, *J* = 33.8 Hz), 91.6, 96.8, 113.9, 125.7 (d, *J* = 293.8 Hz), 130.8, 132.2, 143.8, 160.5, 162.1, 168.9, 190.3; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₂₀F₃N₂O₅ [(M+H)⁺], 413.1319; found, 413.1322.

Diethyl 5-hydroxy-5-(trifluoromethyl)-1,2,3,5-tetrahydroimidazo[1,2-*a*]pyridine -6,8-dicarboxylate (4f)

White solid; Mp 146–149 °C; IR (KBr): 3398, 3308, 2988, 1638, 1575, 1411, 1332, 1216, 768 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.18-1.47$ (m, 6H, CH₃), 3.74–4.05 (m, 4H, NCH₂CH₂N), 4.19–4.29 (m, 4H, OCH₂), 7.83 (s, 1H, CH), 7.91 (br, 1H, OH), 8.02 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): $\delta = 14.5$, 14.7, 43.5, 44.1, 60.0, 61.0, 80.5, 84.7 (q, J = 33.8 Hz), 96.2, 125.7 (q, J = 295.0 Hz), 141.5, 159.4, 166.8, 169.0; HRMS (TOF ES⁺): m/z calcd for C₁₄H₁₈F₃N₂O₅ [(M+H)⁺], 351.1162; found, 351.1164.

Ethyl 6-hydroxy-9-nitro-6-(trifluoromethyl)-2,3,4,6-tetrahydro-1*H*-pyrido [1,2-*a*]pyrimidine-7-carboxylate (4g)

Yellow solid; Mp 147–151 °C; IR (KBr): 3182, 2982, 1668, 1607, 1539, 1474, 1370, 1018, 752 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.31 (t, J = 7.2 Hz, 3H, CH₃), 1.94–1.98 (m, 1H, CH₂), 2.08–2.13 (m, 1H, CH₂), 3.46–3.54 (m, 2H, CH₂), 3.61–3.65 (m, 1H, CH₂), 3.64–3.97 (m, 1H, CH₂), 4.22–4.27 (m, 2H, OCH₂), 8.40 (s, 1H, CH), 8.42 (br, 1H, OH), 10.70 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 19.7, 39.7, 40.5, 62.2, 84.4 (q, J = 33.8 Hz), 100.2, 111.3, 124.5 (q, J = 293.8 Hz), 135.9, 151.8, 168.5; HRMS (TOF ES⁺): m/z calcd for C₁₂H₁₅F₃N₃O₅ [(M+H)⁺], 338.0958; found, 338.0959.

Ethyl 9-(4-chlorobenzoyl)-6-hydroxy-6-(trifluoromethyl)-2,3,4,6-tetrahydro-1*H*-pyrido[1,2-*a*]pyrimidine-7-carboxylate (4h)

Yellow solid; Mp 168–173 °C; IR (KBr): 3429, 2979, 1657, 1595, 1508, 1239, 1174, 1099, 816 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.21 (t, *J* = 6.9 Hz, 3H, CH₃), 1.99–2.08 (m, 2H, CH₂), 3.40–3.43 (m, 1H, NCH₂), 3.54–3.58 (d, m, 2H, NCH₂), 3.94–3.98 (m, 1H, NCH₂),), 4.17 (q, *J* = 6.9 Hz, 2H, OCH₂), 7.4 (d, *J* = 8.1 Hz, 2H, ArH), 7.43 (d, *J* = 8.1 Hz, 2H, ArH), 7.70 (s, 1H, CH), 8.63 (br, 1H, OH), 11.79 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 20.1, 39.2, 39.9, 61.2, 84.0 (d, *J* = 32.5 Hz), 94.1, 95.5, 125.3 (d, *J* = 295.0 Hz), 128.7, 130.5, 136.7, 139.0, 143.7, 156.5, 169.0, 190.2; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₉ClF₃N₂O₄ [(M+H)⁺], 431.0980; found, 431.0984.

Ethyl 9-benzoyl-6-hydroxy-6-(trifluoromethyl)-2,3,4,6-tetrahydro-1*H*-pyrido [1,2-*a*]pyrimidine-7-carboxylate (4i)

Yellow solid; Mp 149–151 °C; IR (KBr): 3427, 2983, 1645, 1598, 1509, 1395, 1241, 1181, 751, 703 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.20 (t, *J* = 7.0 Hz, 3H, CH₃), 1.99–2.08 (m, 2H, CH₂), 3.41–3.45 (m, 1H, NCH₂), 3.55–3.59 (m, 2H, NCH₂), 3.96–3.99 (m, 1H, NCH₂), 4.16 (q, *J* = 7.0 Hz, 2H, OCH₂), 7.42–7.51 (m, 5H, PhH), 7.78 (s, 1H, CH), 8.66 (br, 1H, OH), 11.88 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 20.2, 39.2, 39.9, 61.1, 84.1 (d, *J* = 33.8 Hz), 94.2, 95.0, 125.4 (d, *J* = 295.0 Hz), 128.4, 129.0, 130.6, 140.7, 144.3, 156.6, 169.1, 191.8; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₂₀F₃N₂O₄ [(M+H)⁺], 397.1370; found, 397.1369.

Ethyl 6-hydroxy-9-(4-methylbenzoyl)-6-(trifluoromethyl)-2,3,4,6-tetrahydro-1*H*-pyrido[1,2-*a*]pyrimidine-7-carboxylate (4j)

Yellow solid; Mp 165–170 °C; IR (KBr): 3374, 2984, 1651, 1601, 1503, 1373, 1236, 1176, 776 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.20 (t, *J* = 7.1 Hz, 3H, CH₃), S7

1.78–2.08 (m, 2H, CH₂), 2.42 (s, 3H, ArCH₃), 3.40–3.98 (m, 3H, NCH₂CH₂N), 4.16 (q, J = 7.1 Hz, 2H, OCH₂), 7.23 (d, J = 7.8 Hz, 2H, ArH), 7.40 (d, J = 7.8 Hz, 2H, ArH), 7.81 (s, 1H, CH), 8.68 (br, 1H, OH), 11.91 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): $\delta = 14.6$, 20.2, 21.9, 39.2, 39.9, 61.1, 84.1 (q, J = 32.5 Hz), 94.2, 94.7, 125.4 (q, J = 293.8 Hz), 129.1, 129.2, 137.9, 141.0, 144.5, 156.6, 169.1, 191.7; HRMS (TOF ES⁺): m/z calcd for C₂₀H₂₂F₃N₂O₄ [(M+H)⁺], 411.1526; found, 411.1525.

Ethyl 6-hydroxy-9-(4-methoxybenzoyl)-6-(trifluoromethyl)-2,3,4,6-tetrahydro-1*H*-pyrido[1,2-*a*]pyrimidine-7-carboxylate (4k)

Yellow solid; Mp: 148–150 °C; IR (KBr): 3428, 2980, 1645, 1597, 1506, 1372, 1249, 1173, 837 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.20–1.23 (m, 3H, CH₃), 1.98–2.08 (m, 2H, CH₂), 3.40–3.56 (m, 3H, NCH₂CH₂N), 3.87 (s, 3H, OCH₃), 3.89–3.96 (m, 1H, NCH₂), 4.15–4.19 (m, 2H, OCH₂), 6.95 (d, *J* = 6.4 Hz, 2H, ArH), 7.49 (d, *J* = 6.4 Hz, 2H, ArH), 7.83 (s, 1H, CH), 8.71 (br, 1H, OH), 11.88 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 20.2, 39.2, 39.9, 55.8, 61.0, 84.1 (d, *J* = 32.5 Hz), 94.1, 94.4, 113.7, 125.5 (d, *J* = 295.0 Hz), 131.1, 133.2, 144.5., 156.5, 161.9, 169.1, 191.1; HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₂₂F₃N₂O₅ [(M+H)⁺], 427.1475; found, 427.1473.

Ethyl 10-(4-chlorobenzoyl)-7-hydroxy-7-(trifluoromethyl)-1,2,3,4,5,7,8,9octahydropyrido[1,2-*a*][1,3]diazepine-8-carboxylate (4l)

White solid; Mp 145–146 °C; IR (KBr): 3421, 2946, 1654, 1589, 1367, 1236, 1167, 1097, 807 cm⁻¹: ¹H NMR (500 MHz, CDCl₃): δ = 1.21 (t, *J* = 7.0 Hz, 3H, CH₃), 1.81–1.90 (m, 2H, CH₂), 2.02–2.05 (m, 2H, CH₂), 3.49–3.55 (m, 2H, NCH₂), 3.68–3.73 (m, 1H, NCH₂), 4.15–4.20 (m, 2H, OCH₂), 4.47–4.51(m, 1H, NCH₂), 7.38–7.67 (m, 4H, ArH), 7.66 (s, 1H, CH), 9.05 (br, 1H, OH), 11.59 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 25.4, 25.5, 43.5, 45.2, 61.4, 84.3 (d, *J* = 32.5 Hz), 96.4, 96.7, 125.1 (d, *J* = 292.5 Hz), 128.7, 130.7, 137.0, 139.1, 144.0, 163.1, 169.1,

190.6; HRMS (TOF ES⁺): m/z calcd for C₂₀H₂₁ClF₃N₂O₄ [(M+H)⁺], 445.1136; found, 445.1145.

Ethyl 10-benzoyl-7-hydroxy-7-(trifluoromethyl)-1,2,3,4,5,7,8,9-octahydropyrido [1,2-*a*][1,3]diazepine-8-carboxylate (4m)

White solid; Mp 119–121 °C; IR (KBr): 3433, 2969, 1647, 1578, 1496, 1364, 1096, 759, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.18 (t, *J* = 7.2 Hz, 3H, CH₃), 1.79–1.95 (m, 2H, CH₂), 2.01–2.07 (m, 2H, CH₂), 3.48–3.54 (m, 2H, NCH₂), 3.67–3.72 (m, 1H, CH₂), 4.10–4.16 (m, 2H, OCH₂), 4.47–4.51 (m, 1H, NCH₂), 7.40–7.50 (m, 5H, PhH), 7.73 (s, 1H, CH), 9.06 (br, 1H, OH), 11.66 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 25.4, 25.5, 43.4, 45.2, 61.2,84.3 (d, *J* = 32.5 Hz), 96.2, 96.6, 125.1 (d, *J* = 292.5 Hz), 128.4, 129.2, 130.9, 140.6, 144.6, 163.2, 169.3, 192.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₀H₂₂F₃N₂O₄ [(M+H)⁺], 411.1526; found, 411.1533.

Ethyl 7-hydroxy-10-(4-methylbenzoyl)-7-(trifluoromethyl)-1,2,3,4,5,7,8,9octahydropyrido[1,2-*a*][1,3]diazepine-8-carboxylate (4n)

White solid; Mp 138–139 °C; IR (KBr): 3427, 2933, 1650, 1589, 1369, 1236, 1169, 1098, 821 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.20$ (t, J = 6.9 Hz, 3H, CH₃), 1.80–1.88 (m, 2H, CH₂), 2.00–2.03 (m, 2H, CH₂), 2.41 (s, 3H, ArCH₃), 3.46–3.52 (m, 2H, NCH₂), 3.67–3.70 (m, 1H, NCH₂), 4.16 (t, J = 6.9 Hz, 2H, OCH₂), 4.48–4.51 (m, 1H, NCH₂), 7.22 (d, J = 7.5 Hz, 2H, ArH), 7.40 (d, J = 7.5 Hz, 2H, ArH), 7.76 (s, 1H, CH), 9.09 (br, 1H, OH), 11.65 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): $\delta = 14.6$, 21.9, 25.4, 25.6, 43.5, 45.3, 61.2, 84.4 (q, J = 33.8 Hz), 96.0, 96.6, 125.0 (q, J = 292.5 Hz), 129.1, 129.4, 137.9, 141.3, 144.7, 163.3, 169.3, 192.2; HRMS (TOF ES⁺): m/z calcd for C₂₁H₂₄F₃N₂O₄ [(M+H)⁺], 425.1683; found, 425.1691.

Ethyl 7-hydroxy-10-(4-methoxybenzoyl)-7-(trifluoromethyl)-1,2,3,4,5,7,8,9octahydropyrido[1,2-*a*][1,3]diazepine-8-carboxylate (40)

White solid; Mp 138–140 °C; IR (KBr): 3176, 2945, 1652, 1595, 1494, 1366, 1164, 1031, 836 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.21 (t, *J* = 7.0 Hz, 3H, CH₃), 1.78–1.87 (m, 2H, CH₂), 1.99–2.04 (m, 2H, CH₂), 3.45–3.48 (m, 2H, NCH₂), 3.67–3.70 (m, 1H, NCH₂), 3.86 (s, 3H, OCH₃), 4.17 (q, *J* = 7.0 Hz, 2H, OCH₂), 4.48–4.52 (m, 1H, NCH₂), 6.93 (d, *J* = 8.3 Hz, 2H, ArH), 7.49 (d, *J* = 8.3 Hz, 2H, ArH), 7.77 (s, 1H, CH), 9.11 (br, 1H, OH), 11.59 (br, 1H, NH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 25.4, 25.6, 43.4, 45.3, 55.8, 61.2, 84.4 (d, *J* = 32.5 Hz), 95.7, 96.6, 113.7, 125.2 (d, *J* = 293.8 Hz), 131.4, 133.2, 144.8, 162.1, 163.2, 169.3, 191.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₁H₂₄F₃N₂O₅ [(M+H)⁺], 441.1632; found, 441.1644.

Ethyl 8-(4-chlorobenzoyl)-5-hydroxy-5-(trifluoromethyl)-3,5-dihydro-2*H*-oxazolo[3,2-*a*]pyridine-6-carboxylate (4p)

White solid; Mp: 156–158 °C; IR (KBr): 3178, 2980, 1663, 1600, 1529, 1345, 1262, 1179, 843 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.32$ (t, J = 7.2 Hz, 3H, CH₃), 4.03–4.08 (m, 2H, NCH₂), 4.25–4.29 (m, 2H, OCH₂), 4.63–4.72 (m, 2H, OCH₂), 7.37 (d, J = 8.3 Hz, 2H, ArH), 7.49 (d, J = 8.3 Hz, 2H, ArH), 7.94 (s, 1H, CH), 8.13 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): $\delta = 14.6$, 43.5, 61.9, 70.3, 85.8 (q, J = 33.8 Hz), 91.2, 99.9, 124.7 (q, J = 292.5 Hz), 128.6, 130.2, 137.6, 139.0, 142.7, 163.9, 168.7, 188.0; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₆ClF₃NO₅ [(M+H)⁺], 418.0664; found, 418.0665.

Ethyl 5-hydroxy-8-(4-methylbenzoyl)-5-(trifluoromethyl)-3,5-dihydro-2*H*-oxazolo[3,2-*a*]pyridine-6-carboxylate (4q)

White solid; Mp 164–168 °C; IR (KBr): 3200, 2982, 1662, 1601, 1524, 1345, 1177, 1012, 838 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.29 (t, *J* = 7.1 Hz, 3H, CH₃), 2.39 (s, 3H, ArCH₃), 3.98–4.03 (m, 2H, NCH₂), 4.24 (d, *J* = 6.5 Hz, 2H, OCH₂), 4.62–4.68 (m, 2H, OCH₂), 7.19 (d, *J* = 7.5 Hz, 2H, ArH), 7.46 (d, *J* = 7.5 Hz, 2H, ArH), 7.94 (s, 1H, CH), 8.14 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 22.0, 43.5, 61.7, 70.3, 85.9 (q, *J* = 32.5, Hz), 91.4, 99.2, 124.8 (q, *J* = 293.8 Hz), 129.0, 129.1, 137.7, 142.1, 143.4, 163.8, 168.9, 189.2; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₉F₃NO₅ [(M+H)⁺], 398.1210; found, 398.1213.

Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-5-(trifluoromethyl)-3,5-dihydro-2*H*-oxazolo[3,2-*a*]pyridine-6-carboxylate (4r)

White solid; Mp 169–171 °C; IR (KBr): 3184, 3000, 1677, 1596, 1512, 1263, 1167, 1019, 852 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.31 (t, *J* = 7.2 Hz, 3H, CH₃), 3.85 (s, 3H, OCH₃), 4.01–4.06 (m, 2H, NCH₂), 4.23–4.28 (m, 2H, OCH₂), 4.63–4.70 (m, 2H, OCH₂), 6.90 (d, *J* = 8.6 Hz, 2H, ArH), 7.57 (d, *J* = 8.6 Hz, 2H, ArH), 7.95 (s, 1H, CH), 8.14 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.6, 43.5, 55.7, 61.7, 70.2, 85.9 (q, *J* = 33.8 Hz), 91.3, 99.0, 113.6, 124.8 (q, *J* = 292.5 Hz), 131.1, 132.9, 143.5, 162.6, 163.6, 168.8, 188.3; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₉F₃NO₆ [(M+H)⁺], 414.1159; found, 414.1157.

Ethyl 8-(4-chlorobenzoyl)-5-hydroxy-5-(trifluoromethiyl)-3,5-dihydro-2*H*-thiazolo[3,2-*a*]pyridine-6-carboxylate (4s)

Yellow solid; Mp 145–148 °C; IR (KBr): 3262, 2983, 1664, 1590, 1453, 1245, 1175, 1099, 845 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.26 (t, *J* = 7.0 Hz, 3H, CH₃), 3.19–3.24 (m, 1H, NCH₂), 3.32–3.39 (m, 1H, SCH₂), 4.00–4.06 (m, 1H, SCH₂), 4.24 (q, *J* = 7.0 Hz, 2H, OCH₂), 4.35–4.39 (m, 1H, NCH₂), 7.44 (d, *J* = 8.1 Hz, 2H, ArH), 7.54 (d, *J* = 8.1 Hz, 2H, ArH), 7.73 (s, 1H, CH), 8.20 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 29.4, 50.1, 62.0, 86.2 (q, *J* = 33.8 Hz), 100.2, 103.8, 124.8 (q,

J = 293.8 Hz), 129.0, 130.6, 137.0, 137.9, 140.3, 168.0, 168.7, 188.7; HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₆ClF₃NO₄S [(M+H)⁺], 434.0435; found, 434.0434.

Ethyl 8-benzoyl-5-hydroxy-5-(trifluoromethyl)-3,5-dihydro-2*H*-thiazolo[3,2-*a*] pyridine-6-carb oxylate (4t)

Yellow solid; Mp 129–132 °C; IR (KBr): 3441, 2987, 1658, 1583, 1498, 1397, 1252, 1182, 729 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.23 (t, *J* = 7.0 Hz, 3H, CH₃), 3.19–3.23 (m, 1H, NCH₂), 3.31–3.37 (m, 1H, SCH₂), 3.99–4.06 (m, 1H, SCH₂), 4.22 (q, *J* = 7.0 Hz, 2H, OCH₂), 4.33–4.37 (m, 1H, NCH₂), 7.44–7.60 (m, 5H, PhH), 7.79 (s, 1H, CH), 8.19 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 29.3, 50.1, 61.8, 86.2 (d, *J* = 33.8 Hz), 99.9, 104.1, 124.7 (d, *J* = 292.5 Hz), 128..7, 129.1, 131.7, 138.6, 140.8, 167.7, 168.8, 190.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₇F₃NO₄S [(M+H)⁺], 400.0825; found, 400.0828.

Ethyl 5-hydroxy-8-(4-methylbenzoyl)-5-(trifluoromethyl)-3,5-dihydro-2*H*-thiazolo[3,2-*a*]pyridine-6-carboxylate (4u)

Yellow solid; Mp 122–123 °C; IR (KBr): 3273, 2986, 1664, 1581, 1453, 1248, 1176, 1102, 841 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.25 (t, *J* = 6.7 Hz, 3H, CH₃), 2.42 (s, 3H, ArCH₃), 3.18–3.20 (m, 1H, NCH₂), 3.30–3.33 (m, 1H, SCH₂), 3.99–4.04 (m, 1H, SCH₂), 4.22 (q, *J* = 6.7 Hz, 2H, OCH₂), 4.32–4.36 (m, 1H, NCH₂), 7.26 (d, *J* = 7.5 Hz, 2H, ArH), 7.51 (d, *J* = 7.4 Hz, 2H, ArH), 7.82 (s, 1H, CH), 8.21 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 21.9, 29.3, 50.0, 61.8, 86.2 (q, *J* = 33.8 Hz), 99.7, 104.2, 124.9 (q, *J* = 293.8 Hz), 129.3, 129.4, 135.8, 140.9, 142.3, 167.6, 168.9, 189.9; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₉F₃NO₄S [(M+H)⁺], 414.0981; found, 414.0983.

Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-5-(trifluoromethyl)-3,5-dihydro-2*H*-thiazolo[3,2-*a*]pyridine-6-carboxylate (4v)

Yellow solid; Mp 135–137 °C; IR (KBr): 3214, 2993, 1657, 1593, 1452, 1388, 1260, 1020, 847 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.26 (t, *J* = 7.0 Hz, 3H, CH₃), 3.17–3.21 (m, 1H, NCH₂), 3.30–3.34 (m, 1H, SCH₂), 3.87 (s, 3H, OCH₃), 3.97–4.01 (m, 1H, SCH₂), 4.23 (q, *J* = 7.0 Hz, 2H, OCH₂), 4.34–4.38 (m, 1H, NCH₂), 6.97 (d, *J* = 8.6 Hz, 2H, ArH), 7.60 (d, *J* = 8.6 Hz, 2H, ArH), 7.83 (s, 1H, CH), 8.23 (br, 1H, OH); ¹³C HMR (125 MHz, CDCl₃): δ = 14.5, 29.4, 50.0, 55.8, 61.8, 86.2 (q, *J* = 33.8 Hz), 99.5, 104.1, 114.0, 124.9 (q, *J* = 293.8 Hz), 131.0, 131.4, 141.0, 162.7, 167.3, 168.9, 189.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₉H₁₉F₃NO₅S [(M+H)⁺], 430.0931; found, 430.0930.

<u>General Procedure for the Preparation of Bicyclic Pyridinone (-imine) 6 via</u> One-pot Three-component Reactions

HKAs 1 (2.5mmol), triethoxymethane 2 (3 mmol) and diethyl malonate 5a or ethyl 2-cyanoacetate 5b (3mmol) was charged into a 25 mL round-bottom flask and the mixture was refluxed. The resulting solution was stirred for 1–3 h until the HKAs 1 were completely consumed. The mixture was diluted with EtOAc (50 mL x 2) and quenched with water (50 mL). The organic layer was dried by Na₂SO₄, concentrated,

and purified by flash column chromatography (Petro/AcOEt = 6/1) to afford product **6** with 89-94% yield.

Spectroscopic Data of Bicyclic Pyridinone (-imine) 6

Ethyl 1,2,3,5-tetrahydro-8-(4-chlorobenzoyl)-5-oxoimidazo[1,2-*a*]pyridine-6carboxylate (6a)

Yellow solid; Mp 280–281 °C; IR (KBr): 3494, 2981, 1727, 1568, 1224, 1171 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.31 (t, *J* = 6.6 Hz, 3H, CH₃), 4.01–4.06 (m, 2H, NCH₂), 4.25–4.28 (m, 4H, NCH₂ and OCH₂), 7.45 (d, *J* = 7.2 Hz, 2H, ArH), 7.63 (d, *J* = 7.2 Hz, 2H, ArH), 8.41 (s, 1H, CH), 8.80 (br, 1H, NH); ¹³C NMR (125 MHz, CDCl₃): δ = 14.8, 43.6, 44.0, 61.2, 97.8, 107.4, 129.3, 130.1, 137.0, 138.1, 149.5, 158.3, 158.6, 165.2, 191.7; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₇H₁₅ClN₂NaO₄ [(M+Na)⁺], 369.0613; found, 369.0618.

Ethyl 1,2,3,5-tetrahydro-8-benzoyl-5-oxoimidazo[1,2-*a*]pyridine-6-carboxylate (6b)

Yellow solid; Mp 234–236 °C; IR (KBr): 3302, 2981, 1727, 1568, 1224, 1171, 1105 cm⁻¹; ¹H NMR (500 MHz, CH₃OD+DMSO-*d*₆): $\delta = 0.74$ (t, J = 6.7 Hz, 3H, CH₃), 3.68–3.72 (m, 2H, NCH₂), 3.77 (q, J = 6.7 Hz, 2H, OCH₂), 4.02–4.10 (m, 2H, NCH₂), 5.39 (s, 1H, CH), 7.18–7.30 (m, 5H, ArH and CH); ¹³C NMR (125 MHz, CH₃OD+DMSO-*d*₆): $\delta = 12.3$, 41.4, 43.7, 59.2, 85.1, 105.8, 126.2, 127.5, 127.5, 139.7, 153.6, 156.2, 158.2, 166.5, 194.0; HRMS (TOF ES⁺): *m/z* calcd for C₁₇H₁₆N₂NaO₄ [(M+Na)⁺], 335.1002; found, 335.1008.

Ethyl 1,2,3,5-tetrahydro-8-(4-methylbenzoyl)-5-oxoimidazo[1,2-*a*]pyridine-6carboxylate (6c)

Yellow solid; Mp 203–205 °C; IR (KBr): 3266, 2978, 1694, 1632, 1571, 1275, 1120 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 0.86 (t, *J* = 6.9 Hz, 3H, CH₃), 2.32 (s, 3H, ArCH₃), 3.64–3.71 (m, 2H, NCH₂), 3.83 (q, *J* = 6.9 Hz, 2H, OCH₂), 4.02–4.07 (m, 2H, NCH₂), 5.29 (s, 1H, CH), 7.15 (d, *J* = 7.3 Hz, 2H, ArH), 7.20 (d, *J* = 7.3 Hz, 2H, ArH), 7.88 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 14.0, 21.1, 42.3, 44.5, 59.9, 84.3, 107.4, 127.1, 129.2, 137.4, 138.1, 154.3, 155.2, 158.1, 167.2; HRMS (TOF ES⁻): *m/z* calcd for C₁₈H₁₇N₂O₄ [(M-H)⁺], 325.1194; found, 325.1204.

Ethyl 1,2,3,5-tetrahydro-5-imino-8-nitroimidazo[1,2-*a*]pyridine-6-carboxylate (6d)

Yellow solid; Mp 213–216 °C; IR (KBr): 3493, 2984, 1688, 1535, 1376, 600 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.27–1.31 (m, 3H, CH₃), 3.70–4.00 (m, 4H, NCH₂CH₂N), 4.18–4.24 (m, 2H, OCH₂), 8.41 (s, 1H, CH), 8.81 (br, 1H, NH), 11.40 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 14.5, 45.2, 47.1, 60.7, 98.9, 114.2, 137.7, 150.8, 153,4, 165.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₀H₁₃N₄O₄ [(M+H)⁺], 253.0931; found, 253.0915.

Ethyl 1,2,3,5-tetrahydro-5-imino-8-(4-chlorobenzoyl)imidazo[1,2-*a*]pyridine-6carboxylate (6e)

Yellow solid; Mp 219–226 °C; IR (KBr): 3494, 2982, 1669, 1569, 1374, 1224, 717 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 1.22-1.25$ (m, 3H, CH₃), 3.96–4.00 (m, 2H, NCH₂), 4.10-4.17 (m, 4H, NCH₂ and OCH₂), 7.61–7.66 (m, 4H, ArH), 7.96 (s, 1H,

CH), 8.08 (br, 1H, NH), 9.69 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO- d_6): δ = 14.9, 43.7, 43.8, 59.5, 98.6, 117.3, 118.4, 129.0, 130.4, 136.4, 137.2, 150.5, 157.2, 167.0, 189.6; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₇ClN₃O₃ [(M+H)⁺], 346.0953; found, 346.0974.

Ethyl 1,2,3,5-tetrahydro-5-imino-8-benzoylimidazo[1,2-*a*]pyridine-6- carboxylate (6f)

Yellow solid; Mp: 195–197 °C; IR (KBr): 3494, 2985, 1652, 1536, 1374, 1231, 759 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 1.24–1.27 (m, 3H, CH₃), 3.99–4.01 (m, 2H, NCH₂), 4.12-4.21 (m, 4H, NCH₂ and OCH₂), 7.59–7.65 (m, 5H, PhH), 7.89 (s, 1H, CH), 9.12 (br, 1H, NH), 9.60 (br, 1H, NH); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 14.9, 43.7, 43.8, 59.5, 98.7, 117.3, 118.4, 128.4, 128.9, 131.5, 138.6, 150.4, 157.3, 167.0, 190.8; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₇H₁₈N₃O₃ [(M+H)⁺], 312.1343; found, 312.1348.

Anti-cancer activities of compounds 4

The cytotoxic potential of the newly synthesized bicyclic pyridines **4** were evaluated in vitro against a series of human tumor cell lines according to the procedure described in the literature.⁶ The tumor cell lines were myeloid leukaemia (HL-60 and K562). Cisplatin (DDP) was servered as the reference drug. (IC₅₀ value, defined as the concentrations corresponding to 50% growth inhibition). The tested compounds showed moderate to excellent cellular cytotoxicity in the in vitro antitumor screening expressed by the IC₅₀ values (Table S1).

Compd.	K562	HL60
DDP	5.2	4.7
4 a	>200	>200
4b	142	109
4 c	55	11.7
4d	95	39.2
4e	>200	>200
4f	70	>200
4g	>200	>200
4h	>200	>200
4i	>200	>200
4 j	>200	>200
4 k	14	9.6
41	24	9.3
4 m	22	29.5
4n	144	11.9
40	46	9.4
4p	12.1	>200
4 q	>200	>200
4r	11.5	55.3
4 s	6.1	2.5
4 t	6.5	23.5
4 u	8.1	14.3

Table S1. Cytotoxic activities of bicyclic pyridines **4** in vitro^{*a*} (IC₅₀, μ g/ml^{*b*})

$4\mathbf{v}$	2.1	15.5
^a Cytotoxicity as IC ₅₀ for each cell	line, is the concentration of	compound which reduced by 50%
the optical density of treated cells v	with respect to untreated cells	using the MTT assay.

^b Data represent the mean values of three independent determinations.

X-ray Structure and Data⁷ of 4m

Figure S1 X-Ray crystal structure of 4m

Table S2 Crystal data and structure refinement for 091209c		
Identification code	091209c	
Empirical formula	$C_{20} \ H_{22} \ F_3 \ N_2 \ O_{4.5}$	
Formula weight	419.4	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Hexagonal, R-3	
Unit cell dimensions	a = 35.238(3) A alpha = 90 deg.	
	b = 35.238(3) A beta = 90 deg.	
	c = 8.3319(15) A gamma = 120 deg.	
Volume	8959.6(19) A^3	
Z, Calculated density	18, 1.399 Mg/m^3	
Absorption coefficient	0.117 mm^-1	

001200 ſ

F(000)	3924
Crystal size	0.24x 0.14 x 0.10 mm
Theta range for data collection	2.00 to 28.32 deg.
Limiting indices	-29<=h<=47, -47<=k<=41, -11<=l<=9
Reflection collected/unique	19538/4676[R(int) = 0.0718]
Completeness to theta $= 28.32$	98.3%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9884 and 0.9724
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4676/ 186/ 271
Goodness-of-fit on F^2	0.952
Final R indices [I>2sigma(I)]	R1 = 0.0560, wR2 = 0.1364
R indices (all data)	R1 = 0.1294, $wR2 = 0.1760$
Extinction coefficient	0.00091(15)
Semi-empirical from equivalents	0.339 and -0.190 e.A^-3

C(1)-O(1)	1.247(3)
C(1)-C(8)	1.437(3)
C(1)-C(2)	1.504(3)
C(2)-C(7)	1.389(3)
C(2)-C(3)	1.390(3)
C(3)-C(4)	1.380(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.375(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.383(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.382(4)
C(6)-H(6)	0.9300
C(7)-H(7)	0.9300
C(8)-C(9)	1.414(3)
C(8)-C(19)	1.433(3)
C(9)-C(18)	1.357(3)
C(9)-H(9)	0.9300
C(10)-O(3	1.221(3)
	1.221(3)

Table S3Bond lengths [A] and angles [deg] for 091209c

C(10)-O(4)		1.334(3)
C(10)-C(18))	1.455(3)
C(11)-O(4)		1.454(3)
C(11)-C(12))	1.497(4)
C(11)-H(11.	A)	0.9700
C(11)-H(11)	B)	0.9700
С(12)-Н(12	A)	0.9600
C(12)-H(12)	B)	0.9600
C(12)-H(12	C)	0.9600
C(13)-F(2)		1.328(3)
C(13)-F(3)		1.332(3)
C(13)-F(1)		1.344(3)
C(13)-C(20))	1.538(4)
C(14)-N(1)		1.470(3)
C(14)-C(15))	1.514(4)
C(14)-H(14	A)	0.9700
C(14)-H(14)	B)	0.9700
C(15)-C(16))	1.514(4)
C(15)-H(15	A)	0.9700
C(15)-H(15)	B)	0.9700
C(16)-C(17))	1.497(4)
C(16)-H(16	A)	0.9700
C(16)-H(16)	B)	0.9700
C(17)-N(2)		1.466(3)
C(17)-H(17.	A)	0.9700
C(17)-H(17)	B)	0.9700
C(18)-C(20))	1.508(3)
C(19)-N(2)		1.329(3)
C(19)-N(1)		1.366(3)
C(20)-O(2)		1.400(3)
C(20)-N(1)		1.478(3)
N(2)-H(2)		0.8600
O(2)-H(2A))	0.8200
O(2W)-H(1	1D)	0.8900
O(2W)-H(1	1E)	0.8900
O(1W)-H(1	1D)	0.8451
O(1W)-H(1	0A)	0.8900
O(1W)-H(1	0B)	0.8900
O(1)-C(1)-C	2(8) 12	24.1(2)
O(1)-C(1)-C	2(2) 1	17.7(2)

C(8)-C(1)-C(2)	118.2(2)	
C(7)-C(2)-C(3)	118.6(2)	
C(7)-C(2)-C(1)	121.7(2)	
C(3)-C(2)-C(1)	119.7(2)	
C(4)-C(3)-C(2)	120.1(3)	
C(4)-C(3)-H(3)	119.9	
C(2)-C(3)-H(3)	119.9	
C(5)-C(4)-C(3)	121.0(3)	
C(5)-C(4)-H(4)	119.5	
C(3)-C(4)-H(4)	119.5	
C(4)-C(5)-C(6)	119.5(3)	
C(4)-C(5)-H(5)	120.2	
C(6)-C(5)-H(5)	120.2	
C(7)-C(6)-C(5)	119.7(3)	
C(7)-C(6)-H(6)	120.1	
C(5)-C(6)-H(6)	120.1	
C(6)-C(7)-C(2)	121.1(2)	
C(6)-C(7)-H(7)	119.5	
C(2)-C(7)-H(7)	119.5	
C(9)-C(8)-C(19)	116.6(2)	
C(9)-C(8)-C(1)	121.5(2)	
C(19)-C(8)-C(1)	121.5(2)	
C(18)-C(9)-C(8)	123.5(2)	
C(18)-C(9)-H(9)	118.2	
C(8)-C(9)-H(9)	118.2	
O(3)-C(10)-O(4)	122.3(2)	
O(3)-C(10)-C(18)	124.6(2)	
O(4)-C(10)-C(18)	113.1(2)	
O(4)-C(11)-C(12)	110.8(2)	
O(4)-C(11)-H(11A)	109.5	
C(12)-C(11)-H(11A)	109.5	
O(4)-C(11)-H(11B)	109.5	
C(12)-C(11)-H(11B)	109.5	
H(11A)-C(11)-H(11B)	108.1	
F(2)-C(13)-F(3)	106.9(2)	
F(2)-C(13)-F(1)	106.2(2)	
F(3)-C(13)-F(1)	106.4(2)	
F(2)-C(13)-C(20)	113.1(2)	
F(3)-C(13)-C(20)	113.1(2)	
F(1)-C(13)-C(20)	110.8(2)	

N(1)-C(14)-H(14A)108.8C(15)-C(14)-H(14B)108.8N(1)-C(14)-H(14B)108.8C(15)-C(14)-H(14B)107.7C(16)-C(15)-C(14)110.1(2)C(16)-C(15)-C(14)110.1(2)C(16)-C(15)-H(15A)109.6C(14)-C(15)-H(15B)109.6C(14)-C(15)-H(15B)109.6C(14)-C(15)-H(15B)109.6C(14)-C(15)-H(15B)108.1C(17)-C(16)-C(15)113.7(2)C(17)-C(16)-H(16A)108.8C(15)-C(16)-H(16B)108.8C(15)-C(16)-H(16B)108.8C(15)-C(16)-H(16B)108.7H(16A)-C(16)-H(16B)107.7N(2)-C(17)-H(17A)108.7C(16)-C(17)-H(17B)108.7C(16)-C(17)-H(17B)108.7N(2)-C(17)-H(17B)108.7H(17A)-C(17)-H(17B)107.6C(9)-C(18)-C(20)117.7(2)C(10)-C(18)-C(20)119.8(2)N(2)-C(19)-N(1)120.3(2)N(2)-C(19)-N(1)120.3(2)N(2)-C(19)-C(18)110.6(2)O(2)-C(20)-C(18)114.33(19)N(1)-C(19)-C(18)110.6(2)O(2)-C(20)-C(13)105.9(2)N(1)-C(20)-C(13)107.79(18)C(18)-C(20)-C(13)110.8(2)C(19)-N(1)-C(20)119.94(18)C(14)-N(1)-C(20)120.98(19)C(14)-N(1)-C(20)120.98(19)C(14)-N(1)-C(20)120.98(19)C(14)-N(1)-C(20)120.98(19)	N(1)-C(14)-C(15)	113.7(2)
C(15)-C(14)-H(14A)108.8 $N(1)-C(14)-H(14B)$ 108.8 $C(15)-C(14)-H(14B)$ 107.7 $C(16)-C(15)-C(14)$ 110.1(2) $C(16)-C(15)-C(14)$ 109.6 $C(14)-C(15)-H(15A)$ 109.6 $C(16)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 108.1 $C(17)-C(16)-H(15B)$ 108.1 $C(17)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.7 $N(2)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(19)-N(1)$ 120.3(2) $N(2)-C(19)-N(1)$ 120.3(2) $N(2)-C(19)-N(1)$ 120.3(2) $N(2)-C(19)-N(1)$ 107.70(18) $O(2)-C(20)-C(18)$ 114.33(19) $N(1)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 107.79(18) $O(2)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 107.79(18) $O(2)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 107.79(18) $C(19)-N(1)-C(14)$ 118.9(2) $C(19)-N(1)-C(14)$ 118.9(2) $C(19)-N(1)-C(14)$ 118.9(2) $C(19)-N(1)-C(14)$ 118.9(2) $C(19)-N(1)-C(20)$ 119.94(18) $C(14)-N(1)-C(20)$ 120.98(N(1)-C(14)-H(14A)	108.8
N(1)-C(14)-H(14B)108.8 $C(15)-C(14)-H(14B)$ 107.7 $C(16)-C(15)-C(14)$ 110.1(2) $C(16)-C(15)-H(15A)$ 109.6 $C(14)-C(15)-H(15A)$ 109.6 $C(16)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 108.1 $C(17)-C(16)-C(15)$ 113.7(2) $C(17)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.7 $V(2)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(19)-N(1)$ 122.5(2) $C(9)-C(18)-C(20)$ 117.7(2) $C(10)-C(18)-C(20)$ 119.8(2) $N(2)-C(19)-N(1)$ 120.3(2) $N(2)-C(19)-N(1)$ 107.70(18) $O(2)-C(20)-C(18)$ 110.06(19) $O(2)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 107.79(18) $C(19)-N(1)-C(20)$ 119.94(18) $C(14)-N(1)-C(20)$ 120.98(19) $C(19)-N(1)-C(20)$ 120.98(19) $C(19)-N(1)-C(20)-C(17)$ 130.2(2)	C(15)-C(14)-H(14A)	108.8
C(15)-C(14)-H(14B)108.8 $H(14A)-C(14)-H(14B)$ 107.7 $C(16)-C(15)-C(14)$ 110.1(2) $C(16)-C(15)-H(15A)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $H(15A)-C(15)-H(15B)$ 108.1 $C(17)-C(16)-C(15)$ 113.7(2) $C(17)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.7 $V(2)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $N(2)-C(19)-N(1)$ 122.5(2) $C(9)-C(18)-C(20)$ 117.7(2) $C(10)-C(18)-C(20)$ 119.8(2) $N(2)-C(19)-N(1)$ 120.3(2) $N(2)-C(19)-N(1)$ 107.70(18) $O(2)-C(20)-C(18)$ 114.33(19) $N(1)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 105.9(2) $N(1)-C(20)-C(13)$ 107.79(18) $C(19)-N(1)-C(20)$ 119.94(18) $C(14)-N(1)-C(20)$ 120.98(19) $C(19)-N(2)-C(17)$ 130.2(2)	N(1)-C(14)-H(14B)	108.8
H(14A)-C(14)-H(14B) 107.7 $C(16)-C(15)-C(14)$ $110.1(2)$ $C(16)-C(15)-H(15A)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 108.1 $C(17)-C(16)-C(15)$ $113.7(2)$ $C(17)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.7 $H(16A)-C(16)-H(16B)$ 108.7 $H(16A)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-N(1)$ $107.70(18)$ $O(2)-C(2)-C(13)$ $107.79(18)$ $O(2)-C(2)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $107.79(18)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	C(15)-C(14)-H(14B)	108.8
C(16)-C(15)-C(14) $110.1(2)$ $C(16)-C(15)-H(15A)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $C(14)-C(15)-H(15B)$ 109.6 $H(15A)-C(15)-H(15B)$ 108.1 $C(17)-C(16)-C(15)$ $113.7(2)$ $C(17)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.7 $N(2)-C(17)-C(16)$ $114.1(2)$ $N(2)-C(17)-H(17A)$ 108.7 $C(16)-C(17)-H(17B)$ 108.7 $C(16)-C(17)-H(17B)$ 108.7 $C(16)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(10)$ $122.5(2)$ $C(9)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.0(2)$ $N(2)-C(19)-N(1)$ $120.0(2)$ $N(1)-C(20)-C(18)$ $119.6(2)$ $O(2)-C(20)-C(13)$ $107.79(18)$ $O(2)-C(20)-C(13)$ $107.79(18)$ $O(2)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $107.99(18)$ $C(18)-C(20)-C(13)$ $107.99(18)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	H(14A)-C(14)-H(14B)	107.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(16)-C(15)-C(14)	110.1(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(16)-C(15)-H(15A)	109.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(14)-C(15)-H(15A)	109.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(16)-C(15)-H(15B)	109.6
H(15A)-C(15)-H(15B) 108.1 $C(17)-C(16)-C(15)$ $113.7(2)$ $C(17)-C(16)-H(16A)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $C(15)-C(16)-H(16B)$ 108.8 $H(16A)-C(16)-H(16B)$ 107.7 $N(2)-C(17)-C(16)$ $114.1(2)$ $N(2)-C(17)-H(17A)$ 108.7 $C(16)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(10)$ $122.5(2)$ $C(10)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-C(8)$ $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	C(14)-C(15)-H(15B)	109.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(15A)-C(15)-H(15B)	108.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)-C(16)-C(15)	113.7(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)-C(16)-H(16A)	108.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)-C(16)-H(16A)	108.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)-C(16)-H(16B)	108.8
H(16A)-C(16)-H(16B) 107.7 $N(2)-C(17)-C(16)$ $114.1(2)$ $N(2)-C(17)-H(17A)$ 108.7 $C(16)-C(17)-H(17B)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(10)$ $122.5(2)$ $C(9)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-C(8)$ $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(18)$ $110.06(19)$ $O(2)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	C(15)-C(16)-H(16B)	108.8
N(2)-C(17)-C(16) $114.1(2)$ $N(2)-C(17)-H(17A)$ 108.7 $C(16)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $C(16)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(10)$ $122.5(2)$ $C(9)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-C(8)$ $120.0(2)$ $N(1)-C(19)-C(8)$ $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(18)$ $114.33(19)$ $N(1)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	H(16A)-C(16)-H(16B)	107.7
N(2)-C(17)-H(17A) 108.7 $C(16)-C(17)-H(17A)$ 108.7 $N(2)-C(17)-H(17B)$ 108.7 $C(16)-C(17)-H(17B)$ 108.7 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(10)$ $122.5(2)$ $C(9)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-C(8)$ $120.0(2)$ $N(1)-C(19)-C(8)$ $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(18)$ $114.33(19)$ $N(1)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	N(2)-C(17)-C(16)	114.1(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)-C(17)-H(17A)	108.7
N(2)-C(17)-H(17B) 108.7 $C(16)-C(17)-H(17B)$ 107.6 $H(17A)-C(17)-H(17B)$ 107.6 $C(9)-C(18)-C(10)$ $122.5(2)$ $C(9)-C(18)-C(20)$ $117.7(2)$ $C(10)-C(18)-C(20)$ $119.8(2)$ $N(2)-C(19)-N(1)$ $120.3(2)$ $N(2)-C(19)-N(1)$ $120.0(2)$ $N(1)-C(19)-C(8)$ $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(18)$ $114.33(19)$ $N(1)-C(20)-C(18)$ $110.06(19)$ $O(2)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	C(16)-C(17)-H(17A)	108.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(2)-C(17)-H(17B)	108.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(16)-C(17)-H(17B)	108.7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(17A)-C(17)-H(17B)	107.6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(9)-C(18)-C(10)	122.5(2)
$\begin{array}{ccccc} C(10)-C(18)-C(20) & 119.8(2) \\ N(2)-C(19)-N(1) & 120.3(2) \\ N(2)-C(19)-C(8) & 120.0(2) \\ N(1)-C(19)-C(8) & 119.6(2) \\ O(2)-C(20)-N(1) & 107.70(18) \\ O(2)-C(20)-C(18) & 114.33(19) \\ N(1)-C(20)-C(18) & 110.06(19) \\ O(2)-C(20)-C(13) & 105.9(2) \\ N(1)-C(20)-C(13) & 107.79(18) \\ C(18)-C(20)-C(13) & 110.8(2) \\ C(19)-N(1)-C(14) & 118.9(2) \\ C(19)-N(1)-C(20) & 119.94(18) \\ C(14)-N(1)-C(20) & 120.98(19) \\ C(19)-N(2)-C(17) & 130.2(2) \\ \end{array}$	C(9)-C(18)-C(20)	117.7(2)
N(2)- $C(19)$ - $N(1)$ $120.3(2)$ $N(2)$ - $C(19)$ - $C(8)$ $120.0(2)$ $N(1)$ - $C(19)$ - $C(8)$ $119.6(2)$ $O(2)$ - $C(20)$ - $N(1)$ $107.70(18)$ $O(2)$ - $C(20)$ - $C(18)$ $114.33(19)$ $N(1)$ - $C(20)$ - $C(18)$ $110.06(19)$ $O(2)$ - $C(20)$ - $C(13)$ $105.9(2)$ $N(1)$ - $C(20)$ - $C(13)$ $107.79(18)$ $C(18)$ - $C(20)$ - $C(13)$ $110.8(2)$ $C(19)$ - $N(1)$ - $C(14)$ $118.9(2)$ $C(19)$ - $N(1)$ - $C(20)$ $119.94(18)$ $C(14)$ - $N(1)$ - $C(20)$ $120.98(19)$ $C(19)$ - $N(2)$ - $C(17)$ $130.2(2)$	C(10)-C(18)-C(20)	119.8(2)
N(2)-C(19)-C(8) $120.0(2)$ $N(1)-C(19)-C(8)$ $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(18)$ $114.33(19)$ $N(1)-C(20)-C(18)$ $110.06(19)$ $O(2)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	N(2)-C(19)-N(1)	120.3(2)
N(1)-C(19)-C(8) $119.6(2)$ $O(2)-C(20)-N(1)$ $107.70(18)$ $O(2)-C(20)-C(18)$ $114.33(19)$ $N(1)-C(20)-C(18)$ $110.06(19)$ $O(2)-C(20)-C(13)$ $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	N(2)-C(19)-C(8)	120.0(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-C(19)-C(8)	119.6(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)-C(20)-N(1)	107.70(18)
N(1)- $C(20)$ - $C(18)$ $110.06(19)$ $O(2)$ - $C(20)$ - $C(13)$ $105.9(2)$ $N(1)$ - $C(20)$ - $C(13)$ $107.79(18)$ $C(18)$ - $C(20)$ - $C(13)$ $110.8(2)$ $C(19)$ - $N(1)$ - $C(14)$ $118.9(2)$ $C(19)$ - $N(1)$ - $C(20)$ $119.94(18)$ $C(14)$ - $N(1)$ - $C(20)$ $120.98(19)$ $C(19)$ - $N(2)$ - $C(17)$ $130.2(2)$	O(2)-C(20)-C(18)	114.33(19)
O(2)-C(20)-C(13) $105.9(2)$ $N(1)-C(20)-C(13)$ $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	N(1)-C(20)-C(18)	110.06(19)
N(1)-C(20)-C(13) $107.79(18)$ $C(18)-C(20)-C(13)$ $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	O(2)-C(20)-C(13)	105.9(2)
C(18)-C(20)-C(13) $110.8(2)$ $C(19)-N(1)-C(14)$ $118.9(2)$ $C(19)-N(1)-C(20)$ $119.94(18)$ $C(14)-N(1)-C(20)$ $120.98(19)$ $C(19)-N(2)-C(17)$ $130.2(2)$	N(1)-C(20)-C(13)	107.79(18)
C(19)-N(1)-C(14)118.9(2)C(19)-N(1)-C(20)119.94(18)C(14)-N(1)-C(20)120.98(19)C(19)-N(2)-C(17)130.2(2)	C(18)-C(20)-C(13)	110.8(2)
C(19)-N(1)-C(20)119.94(18)C(14)-N(1)-C(20)120.98(19)C(19)-N(2)-C(17)130.2(2)	C(19)-N(1)-C(14)	118.9(2)
C(14)-N(1)-C(20) 120.98(19) C(19)-N(2)-C(17) 130.2(2)	C(19)-N(1)-C(20)	119.94(18)
C(19)-N(2)-C(17) 130.2(2)	C(14)-N(1)-C(20)	120.98(19)
	C(19)-N(2)-C(17)	130.2(2)

C(19)-N(2)-H(2)	114.9	
C(17)-N(2)-H(2)	114.9	
C(10)-O(4)-C(11)	117.27(18)	
H(11D)-O(2W)-H(11E)	109.5	
H(11D)-O(1W)-H(10A)	110.2	
H(11D)-O(1W)-H(10B)	134.1	
H(10A)-O(1W)-H(10B)	109.5	

Symmetry transformations used to generate equivalent atoms:

O(1)-C(1)-C(2)-C(7)	130.3(3)
C(8)-C(1)-C(2)-C(7)	-49.9(3)
O(1)-C(1)-C(2)-C(3)	-47.3(3)
C(8)-C(1)-C(2)-C(3)	132.5(2)
C(7)-C(2)-C(3)-C(4)	1.7(4)
C(1)-C(2)-C(3)-C(4)	179.4(2)
C(2)-C(3)-C(4)-C(5)	-1.9(4)
C(3)-C(4)-C(5)-C(6)	0.3(5)
C(4)-C(5)-C(6)-C(7)	1.4(4)
C(5)-C(6)-C(7)-C(2)	-1.6(4)
C(3)-C(2)-C(7)-C(6)	0.0(4)
C(1)-C(2)-C(7)-C(6)	-177.6(2)
O(1)-C(1)-C(8)-C(9)	163.4(2)
C(2)-C(1)-C(8)-C(9)	-16.4(3)
O(1)-C(1)-C(8)-C(19)	-9.1(4)
C(2)-C(1)-C(8)-C(19)	171.1(2)
C(19)-C(8)-C(9)-C(18)	-15.3(3)
C(1)-C(8)-C(9)-C(18)	171.9(2)
N(1)-C(14)-C(15)-C(16)	47.8(3)
C(14)-C(15)-C(16)-C(17)	39.3(3)
C(15)-C(16)-C(17)-N(2)	-76.7(3)
C(8)-C(9)-C(18)-C(10)	171.6(2)
C(8)-C(9)-C(18)-C(20)	-6.4(3)
O(3)-C(10)-C(18)-C(9)	-177.6(2)
O(4)-C(10)-C(18)-C(9)	2.0(3)
O(3)-C(10)-C(18)-C(20)	0.4(4)
O(4)-C(10)-C(18)-C(20)	180.0(2)
C(9)-C(8)-C(19)-N(2)	-168.4(2)
C(1)-C(8)-C(19)-N(2)	4.5(3)
C(9)-C(8)-C(19)-N(1)	8.1(3)
C(1)-C(8)-C(19)-N(1)	-179.0(2)

C(9)-C(18)-C(20)-O(2)	153.5(2)
C(10)-C(18)-C(20)-O(2)	-24.6(3)
C(9)-C(18)-C(20)-N(1)	32.1(3)
C(10)-C(18)-C(20)-N(1)	-145.9(2)
C(9)-C(18)-C(20)-C(13)	-87.0(3)
C(10)-C(18)-C(20)-C(13)	95.0(3)
F(2)-C(13)-C(20)-O(2)	-175.34(19)
F(3)-C(13)-C(20)-O(2)	-53.7(3)
F(1)-C(13)-C(20)-O(2)	65.6(3)
F(2)-C(13)-C(20)-N(1)	-60.3(3)
F(3)-C(13)-C(20)-N(1)	61.3(3)
F(1)-C(13)-C(20)-N(1)	-179.34(19)
F(2)-C(13)-C(20)-C(18)	60.2(3)
F(3)-C(13)-C(20)-C(18)	-178.2(2)
F(1)-C(13)-C(20)-C(18)	-58.9(3)
N(2)-C(19)-N(1)-C(14)	22.3(3)
C(8)-C(19)-N(1)-C(14)	-154.1(2)
N(2)-C(19)-N(1)-C(20)	-162.8(2)
C(8)-C(19)-N(1)-C(20)	20.7(3)
C(15)-C(14)-N(1)-C(19)	-85.0(3)
C(15)-C(14)-N(1)-C(20)	100.3(3)
O(2)-C(20)-N(1)-C(19)	-165.0(2)
C(18)-C(20)-N(1)-C(19)	-39.8(3)
C(13)-C(20)-N(1)-C(19)	81.1(2)
O(2)-C(20)-N(1)-C(14)	9.7(3)
C(18)-C(20)-N(1)-C(14)	134.9(2)
C(13)-C(20)-N(1)-C(14)	-104.2(2)
N(1)-C(19)-N(2)-C(17)	20.3(4)
C(8)-C(19)-N(2)-C(17)	-163.2(2)
C(16)-C(17)-N(2)-C(19)	20.5(4)
O(3)-C(10)-O(4)-C(11)	12.8(3)
C(18)-C(10)-O(4)-C(11)	-166.8(2)
C(12)-C(11)-O(4)-C(10)	79.6(3)

Table S5Hydrogen bonds for 091209c [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

C(14)-H(14A)O(2)	0.97	2.19	2.670(3)	109.1	
C(9)-H(9)O(4)	0.93	2.37	2.709(3)	100.9	
O(2)-H(2A)O(3)	0.82	1.90	2.630(2)	147.2	
N(2)-H(2)O(1)	0.86	1.97	2.638(3)	134.2	

¹H NMR and ¹³C NMR Spectra for Bicyclic Pyridines 4, 6

S27

Figure 3. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4b

Figure 7. ¹H NMR (500 MHz, CDCl₃) spectra of compound **4d**

S33

S34

Figure 25. ¹H NMR (500 MHz, CDCl₃) spectra of compound **4m**

Figure 31. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4p

Figure 45. ¹H NMR (500 MHz, CDCl₃) spectra of compound **6a**

Figure 46. ¹³C NMR (125 MHz, CDCl₃) spectra of compound **6a**

S73

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

Figure 49. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **6c**

S74

Supplementary Material (ESI) for Green Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

S76

Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2010

References and Notes

- (a) Reddy, A. V. N.; Maiti, S. N.; Singh, I. P.; Micetich, G. Synth. Commun. 1989, 19, 3021–3025. (b) Foks, H.; Pancechowska-Ksepko, D.; Janowiec, M.; Zwolska, Z.; Augustynowicz-Kopec, E. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 2291–2297.
- 2. Zhao, M.-X.; Wang, M.-X.; Huang, Z.-T. Tetrahedron 2002, 58, 1309–1316.
- 3. (a) Huang, Z.-T.; Wang, M.-X. Synthesis 1992, 12, 1273–1276. (b) Li, Z.-J.; Charles, D. Synth. Commun. 2001, 31, 527–533.
- 4. (a) Huang, Z.-T.; Zhang, P.-C. Chem. Ber. 1989, 122, 2011 2016. (b) Huang, Z.-T.; Shi, X. Synthesis 1990, 2, 162–167.
- 5. Wang, F.-M.; Li H.; Cheng D.; Feng, N.; Zhang, S.-L. Port health control (in Chinese) 2004, 4, 9–10.
- 6. (a) Kim, D. K.; Ryu, D. H.; Lee, J. Y.; Lee, N.; Kim, Y. W.; Kim, J. S.; Chang, K.; Im, G. J.; Kim, T. K.; Choi, W. S. J. Med. Chem., 2001, 44, 1594–1602. (b) Carmichael, J.; DeGraff, W. D.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. Cancer Res. 1987, 47, 936–942. (c) Mossman, T. J. Immunol. Methods 1983, 65, 55–63.
- 7. CCDC 784140 contain the supplementary crystallographic data for compound **4m**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.