An environmentally benign process for the efficient synthesis of

cyclohexanone and 2-methylfuran

Hong-Yan Zheng^{ab}, Yu-Lei Zhu^{*ab}, Zong-Qing Bai^{ab}, Long Huang^{ab}, Hong-Wei Xiang^a, Yong-Wang Li^a ^aState Key Laboratory of Coal Conversion (SKLCC), Institute of Coal Chemistry, Chinese Academy of Sciences, P. O. Box 165, Taiyuan, 030001, P R China ^bGraduate School of the Chinese Academy of Sciences, Beijing 10039, P R China

Supporting Information

Thermodynamic Calculation

In this work, the equilibrium constant for the dehydrogenation of cyclohexanol (CHL) to cyclohexanone (CHN) is defined as followed:

$$K^{0} = K_{p} K_{\phi} (P^{0})^{-1} = \left(\frac{\chi_{CHN} \chi_{H_{2}}}{\chi_{CHL}}\right)_{eq} \left(\frac{\phi_{CHN} \phi_{H_{2}}}{\phi_{CHL}}\right)_{eq} \left(\frac{P^{0}}{P}\right)^{-1}$$
(1)

The equilibrium constant K^0 used in the present work is cited from reference.¹ K_p represents the equilibrium constant based on partial pressure. The typical reaction condition in this work is at atmospheric pressure, so $P^0 = P$. Here χ_i is the mole fraction of component *i*, and ϕ_i is the fugacity coefficient. K_{ϕ} is the fugacity coefficient ratio. The values of ϕ_i and K_{ϕ} can be calculated on the basis of the Redlich-Kwong equation of state.²

$$P = RT / (V - b) - a / T^{0.5} V (V + b)$$
⁽²⁾

The a and b are all constants in the Redlich-Kwong equation, which can be obtain from their critical properties.

$$a = 0.4278R^2 T_C^{2.5} / P_C \tag{3}$$

$$b = 0.0867 R T_C / P_C$$
 (4)

When

$$Z = 1/(1-h) - (A^2/B)h/(1+h)$$
(5)

$$A^{2} = a / R^{2} T^{2.5} = 0.4278 T_{C}^{2.5} / P_{C} T^{2.5}$$
(6)

Supplementary Material (ESI) for Journal of Environmental Monitoring This journal is © The Royal Society of Chemistry 2005

$$B = b / RT = 0.0867T_{c} / P_{c}T$$
⁽⁷⁾

$$h = BP/Z \tag{8}$$

are assumed, the fugacity coefficient ϕ_i is given by

$$\ln\phi = Z - 1 - \ln(Z - BP) - (A^2 / B) \ln(1 + BP / Z)$$
(9)

The critical temperature T_C and pressure P_C of each component used in the present work is cited from reference.³ Z is compressibility factor.

References

- 1 (a) A.H.Cubberley and M.B. Mueller, *J. Am. Chem. Soc.*, 1947, **69**, 1535; (b) *Manufacture and Application of Caprolactam*, ed. V.R.Yang, Hydrocarbon processing Press, Beijing, 1988, pp.101.
- 2 O. Redlich and J.N.S. Kwong, Chem. Rev., 1949, 44, 233.
- 3 (a) W.V. Steele, R.D. Chirico, S.E. Knipmeyer and A. Nguyen, *J. Chem. Eng. Data*, 1997, 42, 1021; (b) S.K. Quadri and A.P. Kudchadker, *J. Chem. Thermodyn.*,1991, 23, 129; (c) H.K. Onnes, C.-A. Crommelin and P.G. Cath, *Proc. K. Ned. Akad. Wet.*,1917, 20, 178.