Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2009

Supporting Information

Self- assembling tripeptide based hydrogels and their use in removal of dyes from waste-water

Bimalendu Adhikari, Goutam Palui and Arindam Banerjee*

	Page No.
Synthesis of the peptides	$2-12$
Figure S1 \& Figure S2	13
Figure S3 \& Figure S4	14
Figure S5 \& Figure S6	15
Figure S7 \& Figure S8	16
Figure S9 \& Figure S10	17
Figure S11 \& Figure S12	18
Figure S13 \& Figure S14	19
Figure S15 \& Figure S16	20
Figure S17	21
Figure S18	23
Figure S19	24
Figure S20	25
Table S1 \& Table S2	26
References	

Supplementary Material (ESI) for Soft Matter

 This journal is © The Royal Society of Chemistry 2009
Synthetic Procedure of Peptides.

Peptides 1-5 were synthesized by conventional solution phase methodology by using racemization free fragment condensation strategy. ${ }^{\text {S1 }}$ The N -terminus was protected by the Boc- group and C-terminus was protected as a methyl ester. Couplings were mediated by dicyclohexyl carbodiimide/ 1-hydroxybenzotriazole. Deprotection of the methyl ester was performed using the saponification method. All final compounds were fully characterized by mass spectrometry, ${ }^{1} \mathrm{H}$-NMR spectroscopy $\left(300 \mathrm{MH}_{\mathrm{Z}}\right)$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy $\left(75 \mathrm{MH}_{\mathrm{Z}}\right)$.

1. Synthesis of Peptide (Boc-Leu-Phe-Phe-OH)

(i) Synthesis of Boc-Leu-OH: The synthesis of this compound was previously reported by our group. ${ }^{\text {S2 }}$
(ii) Boc-Leu(1)-Phe(2)-OMe: $3.39 \mathrm{~g}(17 \mathrm{mmol})$ of Boc-Leu-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Phe-OMe was isolated from $7.33 \mathrm{~g}(34 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $3.5 \mathrm{~g}(17 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC) and $2.30 \mathrm{~g}(17 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate (40 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL})$, 1 M sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$ respectively. This washed organic solution was dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: $5.70 \mathrm{~g}(14.52 \mathrm{mmol}, 85.46 \%)$.
${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}\right): \delta 7.31-7.21(\mathrm{~m}, 5 \mathrm{H}$, aromatic CH$), \delta 7.10\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta$ $6.49\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.87-4.81(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.71\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta$ 3.19-3.04 (m, 2H, $\beta \mathrm{CH}_{2}$), $\delta 1.69-1.56\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right), \delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.92-0.89(\mathrm{~m}, 6 \mathrm{H}, \delta$ CH_{3}); Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$ (392.49): C, 64.26; H, 8.22; N, 20.38\%. Found C, $64.20 ; \mathrm{H}, 8.20 ; \mathrm{N}, 20.36 \%$. MS (ESI) $\mathrm{m} / \mathrm{z} 415.13(\mathrm{M}+\mathrm{Na})^{+}, 416.11(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 172.28(\mathrm{C}$ of CO$), \delta 171.71(\mathrm{C}$ of CO), $\delta 155.52\left(\mathrm{C}\right.$ of CO), $\delta 135.80$ (one phenyl ring C attached with CH_{2}), $\delta 130.66$ (2C,m-C of phenyl ring), δ 128.54 (2C, o-C of phenyl ring), $\delta 127.76$ (p-C of phenyl ring), $\delta 80.06$ (tertiary C of Boc), $\delta 77.51-76.66\left(\mathrm{C}\right.$ of CDCl_{3}), $\delta 53.18(2 \mathrm{C}, \alpha \mathrm{C}), \delta 52.29\left(\mathrm{C}^{2}\right.$ of $\left.\mathrm{OCH}_{3}\right), \delta 41.23\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.92\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 28.29(3 \mathrm{C}$, primary C of Boc), δ $22.88\left(2 \mathrm{C}, \mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 21.94(\mathrm{C}$ of $\gamma \mathrm{CH})$
(iii) Boc-Leu(1)-Phe(2)-OH: To $4.7 \mathrm{~g}(12 \mathrm{mmol})$ of Boc-Leu(1)-Phe(2)-OMe were added 25 mL MeOH and 15 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to $2-3$ using $1(\mathrm{~N}) \mathrm{HCl}$, the

Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2009

aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: $4.16 \mathrm{~g}(10.99 \mathrm{mmol}, 91.63 \%)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 25^{\circ} \mathrm{C}$) $: \delta 12.70(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 7.90\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right) \delta 7.25-7.21$ $(\mathrm{m}, 5 \mathrm{H}$, aromatic CH$), \delta 6.85\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.45-4.43(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.98-3.94(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH})$, $\delta 3.08-3.02\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.94-2.87\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), 1.51-1.49\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right), \delta 1.36(\mathrm{~s}, 9 \mathrm{H}$, Boc- $\left.\mathrm{CH}_{3}\right), \delta 0.85-0.76\left(\mathrm{~m}, 6 \mathrm{H}, \delta \mathrm{CH}_{3}\right)$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ (378.46): C, 63.46; H, 7.99; $\mathrm{N}, 7.40 \%$. Found C, 63.45; H, 8.01; N, 7.42\%. MS (ESI) m/z $401.13(\mathrm{M}+\mathrm{Na})^{+}, 402.12(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d $\left.{ }_{6}, 25^{\circ} \mathrm{C}\right)$: $\delta 172.81(\mathrm{C}$ of COOH$), \delta 172.38(\mathrm{C}$ of CONH$), \delta 155.15(\mathrm{C}$ of CONH$), \delta 137.37$ (one phenyl ring C attached with CH_{2}), $\delta 129.21$ (2C, m-C of phenyl ring), $\delta 128.12$ ($2 \mathrm{C}, o$ - C of phenyl ring), $\delta 126.39$ (p - C of phenyl ring), $\delta 78.03$ (tertiary C of Boc), $\delta 53.08(2 \mathrm{C}, \alpha \mathrm{C}), \delta 52.58\left(\mathrm{C}^{\mathrm{B}} \mathrm{OCH}_{3}\right), \delta 40.58-36.78\left(\mathrm{C}\right.$ of DMSO- ${ }_{6}$ and two $\left.\beta \mathrm{C}\right), \delta 28.19(3 \mathrm{C}$, primary C of Boc), $\delta 22.92\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 21.59(\mathrm{C}$ of $\gamma \mathrm{CH})$.
(iv) Boc-Leu(1)-Phe(2)-Phe(3)-OMe: $3.78 \mathrm{~g}(10 \mathrm{mmol})$ of Boc-Leu-Phe-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Phe-OMe was isolated from $3.23 \mathrm{~g}(15 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $2.06 \mathrm{~g}(10 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC) and $1.35 \mathrm{~g}(10 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate $(40 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: 4.04 g (7.48 mmol, 74.95%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta 7.29-7.11$ (m, 8 H , aromatic CH), $\delta 6.99-6.98(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), \delta$ $6.66\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 6.31\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.831\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta$ 4.76-4.09 (m, 1H, $\alpha \mathrm{CH}), \delta 4.66-4.59(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.05(\mathrm{br}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.66\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.11-2.94(\mathrm{~m}$, $\left.4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.63-1.50\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right), \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.89\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6 \mathrm{~Hz}, 6 \mathrm{H}, \delta \mathrm{CH}_{3}\right)$; Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}$ (539.66): C, 66.77; H, 7.66; $\mathrm{N}, 7.79 \%$. Found C, 66.78; H, 7.64; N, 7.80%. MS (ESI) m/z $562.05(\mathrm{M}+\mathrm{Na})^{+}, 563.08(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 578.06(\mathrm{M}+\mathrm{K})^{+}, 579.07(\mathrm{M}+\mathrm{K}+\mathrm{H}){ }^{+} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ $172.53(\mathrm{C}$ of CO$), \delta 171.34(\mathrm{C}$ of CO$), \delta 170.24(\mathrm{C}$ of CO$), \delta 155.74(\mathrm{C}$ of CO$), \delta 136.46$ (one phenyl ring C attached with CH_{2}), $\delta 135.76$ (one phenyl ring C attached with CH_{2}), $\delta 129.52$ (2C, m-C of phenyl ring), $\delta 129.28$ (2C, m - C of phenyl ring), $\delta 128.77$ (2C,o-C of phenyl ring), $\delta 128.70$ (2C, o-C of phenyl ring), $\delta 127.25$ (p-C of phenyl ring), δ 127.17 (p - C of phenyl ring), $\delta 77.58$ (tertiary C of Boc), $\delta 77.16-76.74\left(\mathrm{C}^{2}\right.$ of $\left.\mathrm{CDCl}_{3}\right), \delta 54.30(\alpha \mathrm{C}), \delta 53.59(2 \mathrm{C}, \alpha \mathrm{C})$,

Supplementary Material (ESI) for Soft Matter

 This journal is © The Royal Society of Chemistry 2009$\delta 52.39\left(\mathrm{C}\right.$ of $\left.\mathrm{OCH}_{3}\right), \delta 41.23\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 38.18\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.97\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 28.42(3 \mathrm{C}$, primary C of Boc), $\delta 24.84\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 24.44\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 21.94(\mathrm{C}$ of $\gamma \mathrm{CH})$.
(v) Boc-Leu(1)-Phe(2)-Phe(3)-OH: To $3.25 \mathrm{~g}(6 \mathrm{mmol})$ of Boc-Leu(1)-Phe(2)-Phe(3)-OMe were added 20 mL MeOH and 8 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to $2-3$ using $1(\mathrm{~N}) \mathrm{HCl}$, the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: $2.76 \mathrm{~g}(5.25 \mathrm{mmol}, 87.62 \%)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 25^{\circ} \mathrm{C}$): $\delta 12.70(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 8.35\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.69(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.30-7.15(\mathrm{~m}, 10 \mathrm{H}, \operatorname{aromatic} \mathrm{CH}), \delta 6.88\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.58-4.56$ $(\mathrm{m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.45-4.43(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.09-2.71\left(\mathrm{~m}, 4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.35(\mathrm{~s}, 9 \mathrm{H}$, Boc- $\left.\mathrm{CH}_{3}\right), \delta 1.30-1.15\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right) \delta 0.82-0.76\left(\mathrm{~m}, 6 \mathrm{H}, \delta \mathrm{CH}_{3}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}-14.45\left(c 1.43, \mathrm{CH}_{3} \mathrm{OH}\right) ;$ Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (525.64): C, 66.26; H, 7.48; N, 7.99\%. Found C, 66.24; H, 7.50; $\mathrm{N}, 8.04 \%$. MS (ESI) m/z $548.08(\mathrm{M}+\mathrm{Na})^{+}, 549.11(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 564.09(\mathrm{M}+\mathrm{K})^{+}, 565.11(\mathrm{M}+\mathrm{K}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 25^{\circ} \mathrm{C}\right): \delta$ $172.68(\mathrm{C}$ of COOH$), \delta 172.03(\mathrm{C}$ of CONH$), \delta 170.97(\mathrm{C}$ of CONH$), \delta 155.13(\mathrm{C}$ of CONH$), \delta 137.45$ (one phenyl ring C attached with CH_{2}), $\delta 137.30$ (one phenyl ring C attached with CH_{2}), $\delta 129.37$ (2C,m-C of phenyl ring), δ 129.07 (2C, m - C of phenyl ring), $\delta 128.24$ ($2 \mathrm{C}, o-\mathrm{C}$ of phenyl ring), $\delta 127.90$ ($2 \mathrm{C}, o-\mathrm{C}$ of phenyl ring), $\delta 126.49$ ($p-\mathrm{C}$ of phenyl ring), $\delta 126.19$ (p-C of phenyl ring), $\delta 78.15$ (tertiary C of Boc), $\delta 53.45(\alpha \mathrm{C}), \delta 53.03$ (2C, $\alpha \mathrm{C}$), δ $40.97-36.73\left(\mathrm{C}\right.$ of $\mathrm{DMSO}_{-\mathrm{d}}^{6}$ and three $\left.\beta \mathrm{C}\right), \delta 28.18$ (3C, primary C of Boc$), \delta 24.17(\mathrm{C}$ of $\gamma \mathrm{CH}), \delta 22.90(\mathrm{C}$ of δ $\left.\mathrm{CH}_{3}\right), \delta 21.53\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right)$

2. Peptide (Boc -Phe-Phe-Leu -OH)

(i) Synthesis of Boc-Phe-OH: The synthesis of this compound was previously reported by our group. ${ }^{\text {S3 }}$
(ii) Boc- Phe(1)-Phe(2)-OMe: $4.51 \mathrm{~g}(17 \mathrm{mmol})$ of Boc-Phe-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Phe-OMe was isolated from $7.33 \mathrm{~g}(34 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $3.50 \mathrm{~g}(17 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC) and $2.29 \mathrm{~g}(17 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate $(40 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: 5.70 g (13.36 mmol, 78.62 \%).

Supplementary Material (ESI) for Soft Matter

This journal is © The Royal Society of Chemistry 2009
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta 7.31-7.18(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$), \delta 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), \delta$ $6.28\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.93\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.81-4.75(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.34-4.32$ $(\mathrm{m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.67\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.11-2.98\left(\mathrm{~m}, 4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right) ;$ Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ (426.51): C, 67.59; H, 7.09; N, 6.57\%. Found C, 67.61; H, 7.1; N, 6.54\%. MS (ESI) m/z $449.30(\mathrm{M}+\mathrm{Na})^{+}$, $450.30(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 465.28(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 171.46(\mathrm{C}$ of CO$), \delta 170.97(\mathrm{C}$ of CO$), \delta$ $155.35\left(\mathrm{C}\right.$ of CO), $\delta 136.53$ (one phenyl ring C attached with CH_{2}), $\delta 135.71$ (one phenyl ring C attached with CH_{2}), δ 129.37 (2C, m - C of phenyl ring), $\delta 129.26$ (2C, m - C of phenyl ring), $\delta 128.63$ (2C, $o-\mathrm{C}$ of phenyl ring), $\delta 128.54$ (2C, $o-\mathrm{C}$ of phenyl ring), $\delta 127.11$ (p-C of phenyl ring), $\delta 126.94$ ($p-\mathrm{C}$ of phenyl ring), $\delta 80.24$ (tertiary C of Boc), $\delta 77.52-76.67\left(\mathrm{C}^{2}\right.$ of $\left.\mathrm{CDCl}_{3}\right), \delta 55.67(\mathrm{C}, \alpha \mathrm{C}), \delta 53.31(\mathrm{C}, \alpha \mathrm{C}), \delta 52.28\left(\mathrm{C}\right.$ of $\left.\mathrm{OCH}_{3}\right), \delta 38.30\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.94(\mathrm{C}$ of $\beta \mathrm{CH}_{2}$), $\delta 28.23$ (3C, primary C of Boc)
(iii) Boc-Phe(1)-Phe(2)-OH: To $5.53 \mathrm{~g}(13 \mathrm{mmol})$ of Boc-Phe(1)-Phe(2)-OMe were added 25 mL MeOH and 15 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to $2-3$ using $1(\mathrm{~N}) \mathrm{HCl}$, the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: $4.94 \mathrm{~g}(11.98 \mathrm{mmol}, 92.16 \%)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right): \delta 8.06\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.29-7.15(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$), \delta 6.9$ $\left(\mathrm{d},{ }^{3} J(\mathrm{H}, \mathrm{H})=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.47-4.40(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.12-3.06\left(\mathrm{~m}, 2 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta$ 2.98-2.88 (m, 2H, $\beta \mathrm{CH}_{2}$), $\delta 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right)$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ (412.48): C, 66.97; $\mathrm{H}, 6.84 ; \mathrm{N}$, 6.97\%. Found C, 67.00; H, 6.86; N, 6.91\%. MS (ESI) m/z $435.33(\mathrm{M}+\mathrm{Na})^{+}, 436.34(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 451.30(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right): \delta 173.34(\mathrm{C}$ of COOH),$\delta 172.23(\mathrm{C}$ of CONH), $\delta 155.65(\mathrm{C}$ of CONH), $\delta 138.65$ (one phenyl ring C attached with CH_{2}), $\delta 137.88$ (one phenyl ring C attached with CH_{2}), $\delta 129.78$ (2C, m-C of phenyl ring), $\delta 129.73$ (2C, m-C of phenyl ring), $\delta 128.74$ (2C, o - C of phenyl ring), $\delta 128.53$ (2C, o-C of phenyl ring), δ 127.01 (p - C of phenyl ring), $\delta 126.69$ (p-C of phenyl ring), $\delta 78.59$ (tertiary C of Boc), $\delta 56.24(\alpha \mathrm{C}), \delta 53.88(\alpha \mathrm{C}), \delta$ $\delta 40.86-39.19\left(\mathrm{C}\right.$ of $\left.\mathrm{DMSO}-\mathrm{d}_{6}\right), \delta 38.01\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.36\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 28.66$ (3C, primary C of Boc).
(iv) Boc-Phe(1)-Phe(2)-Leu(3)-OMe: $4.53 \mathrm{~g}(11 \mathrm{mmol})$ of Boc-Phe-Phe-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Leu-OMe was isolated from $2.99 \mathrm{~g}(16.5 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $2.27 \mathrm{~g}(10 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC)

Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2009

and $1.49 \mathrm{~g}(10 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate $(40 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: 4.85 g (8.99 mmol, 81.65%).
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}\right): \delta 7.34-7.07(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$), \delta 6.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta$ $6.29(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), \delta 4.82\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.65-4.63(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), 4.51-4.48(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta$ $4.31-4.29(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.70\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.14-2.88\left(\mathrm{~m}, 4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.59-1.45\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right), \delta$ $1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.90-0.87\left(\mathrm{~m}, 6 \mathrm{H}, \delta \mathrm{CH}_{3}\right)$; Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}$ (539.66): C, 66.77; H, 7.66; N , 7.79%. Found C, 66.82; H, 7.68; N, 7.75\%. MS (ESI) m/z $562.35(\mathrm{M}+\mathrm{Na})^{+}, 563.37(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 172.73(\mathrm{C}$ of CO$), \delta 171.19(\mathrm{C}$ of CO$), \delta 170.28(\mathrm{C}$ of CO$), \delta 155.74(\mathrm{C}$ of CO$), \delta 136.39$ (one phenyl ring C attached with CH_{2}), $\delta 136.36$ (one phenyl ring C attached with CH_{2}), $\delta 129.50$ (2C,m-C of phenyl ring), δ $129.40(2 \mathrm{C}, m$ - C of phenyl ring), $\delta 128.95$ ($2 \mathrm{C}, o-\mathrm{C}$ of phenyl ring), $\delta 128.80$ ($2 \mathrm{C}, o-\mathrm{C}$ of phenyl ring), $\delta 127.31$ ($p-\mathrm{C}$ of phenyl ring), $\delta 127.22$ (p - C of phenyl ring), $\delta 77.58$ (tertiary C of Boc), $\delta 77.36-75.73\left(\mathrm{C}\right.$ of $\left.\mathrm{CDCl}_{3}\right), \delta 55.95(\mathrm{C}, \alpha$ C), $\delta 54.21(\mathrm{C}, \alpha \mathrm{C}), \delta 52.39\left(\mathrm{C}\right.$ of $\left.\mathrm{OCH}_{3}\right), \delta 51.07(\mathrm{C}, \alpha \mathrm{C}), \delta 41.36\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.99\left(2 \mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 28.31$ (3C, primary C of Boc$), \delta 24.76(\mathrm{C}$ of $\gamma \mathrm{CH}), \delta 22.84\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 21.98\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right)$. (v) Boc-Phe(1)-Phe(2)-Leu(3)-OH: To $3.25 \mathrm{~g}(6 \mathrm{mmol})$ of Boc-Phe(1)-Phe(2)-Leu(3)-OMe were added 20 mL MeOH and 8 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to 2-3 using $1(\mathrm{~N}) \mathrm{HCl}$, the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: 2.76 g ($5.25 \mathrm{mmol}, 87.62 \%$).
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$): $\delta 12.57(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 8.30\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.89 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.91(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.25 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.27-7.18(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$), \delta 6.87\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.55 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.62-4.60$ $(\mathrm{m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.30-4.22(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.09(\mathrm{br}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.09-3.03\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.86-2.78(\mathrm{~m}, 2 \mathrm{H}, \beta$ $\left.\mathrm{CH}_{2}\right), \delta 2.68-2.60\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.64-1.52\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right), \delta 1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.92-0.84(\mathrm{~m}$, $\left.6 \mathrm{H}, \delta \mathrm{CH}_{3}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}-23.11\left(c\right.$ 1.01, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$; Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (525.64): C, 66.26; H, 7.48; N, 7.99%. Found C, 66.30; H, 7.50; N, 7.95\%. MS (ESI) m/z $548.28(\mathrm{M}+\mathrm{Na})^{+}, 549.29(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 564.26(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\left.{ }_{6}, 25^{\circ} \mathrm{C}\right): \delta 174.69(\mathrm{C}$ of COOH$), \delta 172.12(\mathrm{C}$ of CONH$), \delta 171.74(\mathrm{C}$ of CONH) $\delta 155.86(\mathrm{C}$ of CONH), $\delta 138.94$ (one phenyl ring C attached with CH_{2}), $\delta 138.93$ (one phenyl ring C attached with CH_{2}), $\delta 130.25$

Supplementary Material (ESI) for Soft Matter

(2C, m-C of phenyl ring), $\delta 129.96$ (2C, m-C of phenyl ring), $\delta 128.82$ (4C, o-C of phenyl ring), $\delta 127.09$ (p-C of phenyl ring), $\delta 126.98$ ($p-\mathrm{C}$ of phenyl ring), $\delta 78.98$ (tertiary C of Boc), $\delta 56.77(\alpha \mathrm{C}), \delta 54.10(\alpha \mathrm{C}), \delta 51.08(\alpha \mathrm{C}), \delta$ $41.22-38.34\left(\mathrm{C}\right.$ of DMSO_{6} and three $\left.\beta \mathrm{C}\right), \delta 28.94$ (3C, primary C of Boc$), \delta 25.12(\mathrm{C}$ of $\gamma \mathrm{CH}), \delta 23.70(\mathrm{C}$ of δ $\left.\mathrm{CH}_{3}\right), \delta 22.17\left(\mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right)$.

3. Peptide (Boc-Leu-Phe-Leu -OH)

(i) Synthesis of Boc-Leu-Phe-OH: This compound has been prepared according to the above mentioned procedure for the synthesis of peptide 1
(ii) Boc-Leu(1)-Phe(2)-Leu(3)-OMe: $3.78 \mathrm{~g}(10 \mathrm{mmol})$ of Boc-Leu-Phe-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Leu-OMe was isolated from $2.72 \mathrm{~g}(15 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $3.09 \mathrm{~g}(10 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC) and $2.02 \mathrm{~g}(10 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate $(40 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: 3.84 g (7.59 mmol, 75.89\%)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}$, aromatic CH$), \delta 6.69\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{NH}\right), \delta$ $6.44(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), \delta 4.81\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.72-4.65(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), 4.52-4.50(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.05$ (br, $1 \mathrm{H}, \alpha \mathrm{CH}$), $\delta 3.69\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.14-3.01\left(\mathrm{~m}, 2 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.61-1.46\left(\mathrm{~m}, 6 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ and $\left.\gamma \mathrm{CH}\right), \delta 1.40(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.90-0.86\left(\mathrm{~m}, 12 \mathrm{H}, \delta \mathrm{CH}_{3}\right)$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6}(505.65): \mathrm{C}, 64.13 ; \mathrm{H}, 8.57 ; \mathrm{N}, 8.31 \%$. Found C, 64.15; H, 8.6; N, 8.29\%. MS (ESI) m/z $528.14(\mathrm{M}+\mathrm{Na})^{+}, 529.16(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right): \delta 172.71(\mathrm{C}$ of CO$), \delta 171.69(\mathrm{C}$ of CO$), \delta 171.60(\mathrm{C}$ of CO$), \delta 155.77(\mathrm{C}$ of CO$), \delta 135.84$ (one phenyl ring C attached with CH_{2}), $\delta 129.25$ (2C, m-C of phenyl ring), $\delta 128.55$ (2C, o-C of phenyl ring), $\delta 127.08$ (C of phenyl ring), $\delta 80.04$ (tertiary C of Boc), $\delta 77.53-76.68\left(\mathrm{C}_{\left.\text {of } \mathrm{CDCl}_{3}\right), \delta 53.38(\alpha \mathrm{C}), \delta 52.97(\alpha \mathrm{C}), \delta 52.22\left(\mathrm{C} \text { of } \mathrm{OCH}_{3}\right), \delta 51.69(\alpha) .}^{(\alpha)}\right.$ C), $\delta 41.05\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 40.84\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.91\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 29.39(3 \mathrm{C}$, primary C of Boc) $\delta 24.63(2 \mathrm{C}, \mathrm{C}$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 24.58\left(2 \mathrm{C}, \mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 22.99(\mathrm{C}$ of $\gamma \mathrm{CH}), \delta 22.86(\mathrm{C}$ of $\gamma \mathrm{CH})$
(iii) Boc-Leu(1)-Phe(2)-Leu(3)-OH: To 3.35 g (7 mmol) of Boc-Leu(1)-Phe(2)-Leu(3)-OMe were added 20 mL MeOH and 8 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to $2-3$ using $1(\mathrm{~N}) \mathrm{HCl}$,

Supplementary Material (ESI) for Soft Matter

 This journal is © The Royal Society of Chemistry 2009the aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: 2.95 g ($6 \mathrm{mmol}, 85.76 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 25^{\circ} \mathrm{C}$): $\delta 12.56(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 8.26\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.72(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.18 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.21-7.16(\mathrm{~m}, 5 \mathrm{H}$, aromatic CH$), \delta 6.91\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.29 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.59-4.58$ (m, 1H, $\alpha \mathrm{CH}), \delta 4.25-4.23(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.88-3.86(\mathrm{br}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.05-2.99\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.82-2.75(\mathrm{~m}$, $\left.1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.55-1.50\left(\mathrm{~m}, 4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 1.30-1.25(\mathrm{~m}, 2 \mathrm{H}, \gamma \mathrm{CH}), \delta 0.90-0.72(\mathrm{~m}, 12 \mathrm{H}, \delta$ CH_{3}); $[\alpha]^{26}{ }_{\mathrm{D}}{ }^{-} 33.81\left(c\right.$ 1.17, $\mathrm{CH}_{3} \mathrm{OH}$); Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}$ (491.62): C, $63.52 ; \mathrm{H}, 8.41 ; \mathrm{N}, 8.55 \%$. Found C, 63.50; H, 8.44; N, 8.53\%. MS (ESI) m/z $514.39(\mathrm{M}+\mathrm{Na})^{+}, 515.37(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 530.35(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$): $\delta 174.654(\mathrm{C}$ of COOH), $\delta 172.92$ (C of CONH), $\delta 171.71$ (C of CONH), $\delta 155.97$ (C of CONH), δ 138.29 (one phenyl ring C attached with CH_{2}), $\delta 130.20$ ($2 \mathrm{C}, m$-C of phenyl ring), $\delta 128.72$ ($2 \mathrm{C}, o-\mathrm{C}$ of phenyl ring), δ 126.99 (p-C of phenyl ring), $\delta 78.94$ (tertiary C of Boc), $\delta 53.99(\alpha \mathrm{C}), \delta 53.78(\alpha \mathrm{C}), \delta 51.05(\alpha \mathrm{C}), \delta 41.75-38.55$ (C of DMSO-d d_{6} and three $\beta \mathrm{C}$), $\delta 29.03$ (3C, primary C of Boc), $\delta 25.07$ (C of $\left.\gamma \mathrm{CH}\right), \delta 25.01(\mathrm{C}$ of $\gamma \mathrm{CH}), \delta 23.69(2 \mathrm{C}, \mathrm{C}$ of $\left.\delta \mathrm{CH}_{3}\right), \delta 22.14\left(2 \mathrm{C}, \mathrm{C}\right.$ of $\left.\delta \mathrm{CH}_{3}\right)$.

4. Synthesis of Peptide (Boc-Val-Phe-Phe-OH)

(i) Synthesis of Boc-Val-OH: A solution of L-Valine ($2.34 \mathrm{~g}, 20 \mathrm{mmol}$) in a mixture of dioxane (40 mL), water $(20 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ was stirred and cooled in an ice water bath. Di-tert-butyl pyrocarbonate $(4.8 \mathrm{~g}, 22 \mathrm{mmol})$ was added and stirring was continued at room temperature for 6 h . Then the solution was concentrated in vacuum to about $20-25 \mathrm{~mL}$, cooled in an ice water bath, covered with a layer of ethyl acetate (about 20 mL), and acidified with a dilute solution of KHSO_{4} to pH 2-3 (congo red). The aqueous phase was extracted with ethyl acetate and this operation was done repeatedly. The ethyl acetate extract were pooled, washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. The pure material was obtained as a waxy solid.

Yield: 3.95 g ($18.2 \mathrm{mmol}, 91 \%$); Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4}$ (217.26): C, 55.28 ; H, 8.81 ; N, 6.45%. Found C, 55.30 ; H, 8.85; N, 6.40\%.
(ii) Boc-Val(1)-Phe(2)-OMe: 3.69 g (17 mmol) of Boc-Val-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Phe-OMe was isolated from $7.33 \mathrm{~g}(34 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by 3.5 g (17 mmol) of dicyclohexyl carbodiimide (DCC) and $2.297 \mathrm{~g}(17 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate (40 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$,

Supplementary Material (ESI) for Soft Matter

 This journal is © The Royal Society of Chemistry 2009dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: 5.29 g (13.98 mmol, 82.27 \%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, TMS): $\delta 7.32-7.22(\mathrm{~m}, 3 \mathrm{H}$, aromatic CH$), \delta 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), \delta$ $6.35\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 5.03\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.90-4.84(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.93-3.88(\mathrm{~m}$, $1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.73\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.13-3.10\left(\mathrm{~m}, 2 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), \delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right)$, $\delta 0.93-0.86\left(\mathrm{~m}, 6 \mathrm{H}, \gamma \mathrm{CH}_{3}\right.$); Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$ (378.46): C, 63.47; H, 7.99; N, 7.40\%. Found C, 63.51; H, 8.01; $\mathrm{N}, 7.35 \%$. MS (ESI) m/z $401.05(\mathrm{M}+\mathrm{Na})^{+}, 402.03(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 417.02(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}\right.$ C): $\delta 171.84(\mathrm{C}$ of CO$), \delta 171.28\left(\mathrm{C}\right.$ of CO), $\delta 155.47\left(\mathrm{C}\right.$ of CO), $\delta 136.68$ (one phenyl ring C attached with CH_{2}), δ 129.34 ($2 \mathrm{C}, m$-C of phenyl ring), $\delta 128.62$ (2C, o-C of phenyl ring), $\delta 126.88$ (p-C of phenyl ring), $\delta 80.18$ (tertiary C of Boc), $\delta 77.52-76.67\left(\mathrm{C}^{2} \mathrm{CDCl}_{3}\right), \delta 57.27(\mathrm{C}, \alpha \mathrm{C}), \delta 55.82(\mathrm{C}, \alpha \mathrm{C}), \delta 52.06\left(\mathrm{C}\right.$ of $\left.\mathrm{OCH}_{3}\right), \delta 38.04\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta$ $31.25\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 28.26$ (3C, primary C of Boc), $\delta 18.83$ (C of $\gamma \mathrm{CH}$), $\delta 17.79$ (C of $\gamma \mathrm{CH}$).
(iii) Boc-Val(1)-Phe(2)-OH: To $4.54 \mathrm{~g}(12 \mathrm{mmol})$ of Boc-Val(1)-Phe(2)-OMe were added 25 mL MeOH and 15 mL of 1(M) NaOH and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to 2-3 using $1(\mathrm{~N}) \mathrm{HCl}$, the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: $4.19 \mathrm{~g}(11.50 \mathrm{mmol}, 95.88 \%)$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$): $\delta 12.62(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 8.06\left(d,{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.28-7.17$ $(\mathrm{m}, 5 \mathrm{H}$, aromatic CH$), \delta 6.59\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.48-4.40(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH})$, $\delta 3.08-3.02\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.92-2.84\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), \delta 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta$ $0.77-0.73\left(\mathrm{~m}, 6 \mathrm{H}, \gamma \mathrm{CH}_{3}\right.$); Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ (364.44): C, 62.62; H, 7.74; N, 7.69\%. Found C, 62.24; H, 7.78; $\mathrm{N} 7.66 \%$. MS (ESI) $\mathrm{m} / \mathrm{z} 387(\mathrm{M}+\mathrm{Na})^{+}, 403.01(\mathrm{M}+\mathrm{K})^{+}, 404.00(\mathrm{M}+\mathrm{K}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, 25^{\circ}$ C): $\delta 173.36(\mathrm{C}$ of COOH$), \delta 172.39(\mathrm{C}$ of CONH), $\delta 155.72(\mathrm{C}$ of CONH), $\delta 138.64$ (one phenyl ring C attached with CH_{2}), $\delta 129.68$ ($2 \mathrm{C}, m$-C of phenyl ring), $\delta 128.45$ ($2 \mathrm{C}, o-\mathrm{C}$ of phenyl ring), $\delta 126.63$ (p - C of phenyl ring), $\delta 78.53$ (tertiary C of Boc), $\delta 57.44(\alpha \mathrm{C}), \delta 56.10(\alpha \mathrm{C}), \delta 40.78-39.12\left(\mathrm{C}\right.$ of DMSO-d $\left.\mathrm{d}_{6}\right), \delta 37.69(\beta \mathrm{C}), \delta 30.66(\beta \mathrm{C}), \delta 28.57$ (3C, primary C of Boc), $\delta 19.50$ (C of $\gamma \mathrm{CH}_{3}$), $\delta 18.33$ (C of $\gamma \mathrm{CH}_{3}$).
(iv) Boc-Val(1)-Phe(2)-Phe(3)-OMe: $3.64 \mathrm{~g}(10 \mathrm{mmol})$ of Boc-Val-Phe-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Phe-OMe was isolated from $3.24 \mathrm{~g}(15 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $2.06 \mathrm{~g}(10 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC)

Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2009

and $1.35 \mathrm{~g}(10 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate $(40 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: 4.20 g (8 mmol , 79.84 \%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta 7.29-7.18(\mathrm{~m}, 8 \mathrm{H}$, aromatic CH$), \delta 6.98-6.95(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH$), \delta$ $6.60\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 6.33\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 5.00\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta$ 4.76-4.65(m, 2H, $2 \alpha \mathrm{CH}), \delta 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.64\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.13-2.94\left(\mathrm{~m}, 4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta$ 2.10-2.04 (m, 1H, $\beta \mathrm{CH}), \delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.88-0.78\left(\mathrm{~m}, 6 \mathrm{H}, \gamma \mathrm{CH}_{3}\right) ;$ Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (525.64): C, 66.26; H, 7.48; N, 7.99\%. Found C, 66.31; H, 7.50; N, 7.95\%. MS (ESI) m/z $548.11(\mathrm{M}+\mathrm{Na})^{+}$, $549.13(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 564.10(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 171.49(\mathrm{C}$ of CO$), \delta 171.19(\mathrm{C}$ of CO), δ $170.16(\mathrm{C}$ of CO$), \delta 155.78\left(\mathrm{C}\right.$ of CO), $\delta 136.25$ (one phenyl ring C attached with CH_{2}), $\delta 135.61$ (one phenyl ring C attached with CH_{2}), $\delta 129.33$ (2C, m-C of phenyl ring), $\delta 129.11$ (2C, m-C of phenyl ring), $\delta 128.58$ (2C, o-C of phenyl ring), $\delta 128.49$ ($2 \mathrm{C}, o$ - C of phenyl ring), $\delta 127.04$ ($p-\mathrm{C}$ of phenyl ring), $\delta 126.96$ (p - C of phenyl ring), $\delta 79.89$ (tertiary C of Boc$), \delta 77.45-76.61\left(\mathrm{C} \mathrm{of}_{\mathrm{CDCl}}^{3}\right.$) $, \delta 59.94(\mathrm{C}, \alpha \mathrm{C}), \delta 54.10(\mathrm{C}, \alpha \mathrm{C}), \delta 53.41(\mathrm{C}, \alpha \mathrm{C}), \delta 52.18\left(\mathrm{C}\right.$ of $\left.\mathrm{OCH}_{3}\right), \delta$ $38.24\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 37.85\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 30.71\left(\mathrm{C}\right.$ of $\left.\beta \mathrm{CH}_{2}\right), \delta 28.27(3 \mathrm{C}$, primary C of Boc$), \delta 19.18\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right)$, $\delta 17.49\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right)$.
(v) Boc-Val(1)-Phe(2)-Phe(3)-OH: To $3.67 \mathrm{~g}(7 \mathrm{mmol})$ of Boc-Val(1)-Phe(2)-Phe(3)-OMe were added 20 mL MeOH and 8 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to $2-3$ using $1(\mathrm{~N}) \mathrm{HCl}$, the aqueous layer was extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$. The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: $3.22 \mathrm{~g}(6.29 \mathrm{mmol}, 89.94 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}, 25^{\circ} \mathrm{C}\right): \delta 12.50(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 8.34\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.84(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.29-7.15(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$), \delta 6.62\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.64-4.61$ $(\mathrm{m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.52-4.41(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.73-3.67(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 3.11-2.88\left(\mathrm{~m}, 3 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.77-2.69(\mathrm{~m}$, $\left.1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), \delta 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.67-0.61\left(\mathrm{~m}, 6 \mathrm{H}, \gamma \mathrm{CH}_{3}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}-18.03(c 1.31$, $\mathrm{CH}_{3} \mathrm{OH}$); Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6}$ (511.61): C, 65.73 ; H, 7.29 ; N, 8.21%. Found C, $65.75 ; \mathrm{H}, 7.33 ; \mathrm{N}, 8.16 \%$. MS (ESI) $\mathrm{m} / \mathrm{z} 534.42(\mathrm{M}+\mathrm{Na})^{+}, 535.46(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$): $\delta 172.54(\mathrm{C}$ of COOH$), \delta$ $171.02(\mathrm{C}$ of CONH$), \delta 170.85(\mathrm{C}$ of CONH$), \delta 155.20(\mathrm{C}$ of CONH$), \delta 137.54$ (one phenyl ring C attached with $\left.\mathrm{CH}_{2}\right)$, $\delta 137.24$ (one phenyl ring C attached with $\left.\mathrm{CH}_{2}\right), \delta 129.19(2 \mathrm{C}, m$ - C of phenyl ring), $\delta 129.01$ ($2 \mathrm{C}, m$ - C of phenyl ring),

Supplementary Material (ESI) for Soft Matter

This journal is © The Royal Society of Chemistry 2009
$\delta 128.15$ (2C, o-C of phenyl ring), $\delta 127.89$ (2C, o - C of phenyl ring), $\delta 126.40$ (p - C of phenyl ring), $\delta 126.13$ (p - C of phenyl ring), $\delta 78.02$ (tertiary C of Boc), $\delta 59.89(\alpha \mathrm{C}), \delta 53.35(\alpha \mathrm{C}), \delta 53.22(\alpha \mathrm{C}), \delta 40.33-38.66\left(\mathrm{C}\right.$ of DMSO-d $\left.{ }_{6}\right)$, $\delta 37.81(\beta \mathrm{C}), \delta 36.72(\beta \mathrm{C}), \delta 30.52(\beta \mathrm{C}), \delta 28.12(3 \mathrm{C}$, primary C of Boc$), \delta 19.08\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right), \delta 17.99\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right)$.

5. Synthesis of Peptide (Boc -Phe-Phe-Val -OH)

(i) Synthesis of Boc-Phe-Phe-OH: This compound has been prepared according to peptide $\mathbf{2}$.
(ii) Boc-Phe(1)-Phe(2)-Val (3)-OMe: $4.53 \mathrm{~g}(11 \mathrm{mmol})$ of Boc-Phe-Phe-OH was dissolved in 10 mL of dry DMF in an ice-water bath. H-Val-OMe was isolated from $2.76 \mathrm{~g}(11.60 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization; subsequent extraction with ethyl acetate and ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $2.27 \mathrm{~g}(11 \mathrm{mmol})$ of dicyclohexyl carbodiimide (DCC) and $1.49 \mathrm{~g}(11 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 3 days. The residue was taken up in ethyl acetate $(40 \mathrm{~mL})$ and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $1(\mathrm{~N}) \mathrm{HCl}(3 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL}), 1(\mathrm{M})$ sodium carbonate $(3 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated in vacuum. A white material was obtained. Yield: $4.73 \mathrm{~g}(9 \mathrm{mmol}$, 81.83 \%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{TMS}$): $\delta 7.31-7.09(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$), \delta 6.58\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right)$, $\delta 6.35\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.91\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.68-4.61(\mathrm{~m}, 1 \mathrm{H}, \alpha \mathrm{CH}), \delta 4.42-4.34$ $(\mathrm{m}, 2 \mathrm{H}, 2 \alpha \mathrm{CH}), \delta 3.69\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \delta 3.31-2.90\left(\mathrm{~m}, 4 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), \delta 1.36(\mathrm{~s}, 9 \mathrm{H}$, Boc- CH_{3}), $\delta 0.86-0.74\left(\mathrm{~m}, 6 \mathrm{H}, \gamma \mathrm{CH}_{3}\right)$; Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ (525.64): C, 66.26; H, 7.48; $\mathrm{N}, 7.99 \%$. Found C, 66.28; H, 7.55; N, 8.04\%. MS (ESI) m/z $548.30(\mathrm{M}+\mathrm{Na})^{+}, 549.31(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 564.29(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 171.57(\mathrm{C}$ of CO$), \delta 171.19(\mathrm{C}$ of CO$), \delta 170.28(\mathrm{C}$ of CO$), \delta 155.28(\mathrm{C}$ of CO$), \delta 136.37$ (one phenyl ring C attached with CH_{2}), $\delta 136.25$ (one phenyl ring C attached with CH_{2}), $\delta 129.31$ (2C,m-C of phenyl ring), δ $129.28(2 \mathrm{C}, m-\mathrm{C}$ of phenyl ring), $\delta 128.76$ (2C, $o-\mathrm{C}$ of phenyl ring), $\delta 128.68$ (2C, $o-\mathrm{C}$ of phenyl ring), $\delta 127.09$ ($p-\mathrm{C}$ of phenyl ring), $\delta 127.05$ (p-C of phenyl ring), $\delta 80.44$ (tertiary C of Boc), $\delta 77.46-76.61$ (C of CDCl_{3}), $\delta 57.49(\alpha \mathrm{C}), \delta$ $55.81(\alpha \mathrm{C}), \delta 54.48(\alpha \mathrm{C}), \delta 52.09\left(\mathrm{C} \mathrm{of}_{\mathrm{OCH}}^{3}\right.$) $, \delta 37.98(2 \mathrm{C}, \beta \mathrm{C}), \delta 31.07(\beta \mathrm{C}), \delta 28.21$ (3C, primary C of Boc), δ $18.85\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right), \delta 17.87\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right)$.
(iii) Boc-Phe(1)-Phe(2)-Val(3)-OH: To $3.68 \mathrm{~g}(7 \mathrm{mmol})$ of Boc-Phe(1)-Phe(2)-Val(3)-OMe were added 20 mL MeOH and 8 mL of $1(\mathrm{M}) \mathrm{NaOH}$ and the progress of saponification was monitored by thin-layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum and the residue was taken in 50 mL of water and washed with diethyl ether $(2 \times 50 \mathrm{~mL})$. The pH of the aqueous layer was then adjusted to $2-3$ using $1(\mathrm{~N}) \mathrm{HCl}$,

Supplementary Material (ESI) for Soft Matter

 This journal is © The Royal Society of Chemistry 2009the aqueous layer was extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The extract were pooled, dried over anhydrous sodium sulfate and evaporated in vacuum. Yield: 3.06 g ($5.98 \mathrm{mmol}, 85.47 \%$).
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}, 25^{\circ} \mathrm{C}$): $\delta 12.69(\mathrm{br}, 1 \mathrm{H},-\mathrm{COOH}), \delta 8.19\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.95(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 7.27-7.07(\mathrm{~m}, 10 \mathrm{H}$, aromatic CH$), \delta 6.89\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), \delta 4.71-4.69$ (m, 1H, $\alpha \mathrm{CH}$), $\delta 4.20-4.16(\mathrm{~m}, 2 \mathrm{H}, 2 \alpha \mathrm{CH}), \delta 3.08-3.02\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.87-2.79\left(\mathrm{~m}, 2 \mathrm{H}, \beta \mathrm{CH}_{2}\right), \delta 2.68-2.63$ (m, 1H, $\beta \mathrm{CH}_{2}$), $\delta 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), \delta 1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right), \delta 0.91-0.83\left(\mathrm{~m}, 6 \mathrm{H}, \gamma \mathrm{CH}_{3}\right) ;[\alpha]^{26} \mathrm{D}^{-1} 16.66(c$ $0.89, \mathrm{CH}_{3} \mathrm{OH}$); Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6}$ (511.61): C, 65.73; H, 7.29; $\mathrm{N}, 8.21$. Found C, 65.76; H, 7.35; $\mathrm{N}, 8.15$. MS (ESI) $\mathrm{m} / \mathrm{z} 534.36(\mathrm{M}+\mathrm{Na})^{+}, 535.38(\mathrm{M}+\mathrm{Na}+\mathrm{H})^{+}, 550.36(\mathrm{M}+\mathrm{K})^{+} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, DMSO- $\left._{6}, 25^{\circ} \mathrm{C}\right): \delta 172.91$ $(\mathrm{C}$ of COOH$), \delta 171.49(\mathrm{C}$ of CONH$), \delta 171.25(\mathrm{C}$ of CONH), $\delta 155.11$ (C of CONH), $\delta 138.15$ (one phenyl ring C attached with CH_{2}), $\delta 137.55$ (one phenyl ring C attached with CH_{2}), $\delta 129.48$ ($2 \mathrm{C}, m$ - C of phenyl ring), $\delta 129.20$ (2C, m-C of phenyl ring), $\delta 128.06$ (4C, $o-\mathrm{C}$ of phenyl ring), $\delta 126.35$ (p-C of phenyl ring), $\delta 126.23$ (p-C of phenyl ring), δ 78.21 (tertiary C of Boc), $\delta 57.24(\alpha \mathrm{C}), \delta 56.00(\alpha \mathrm{C}), \delta 53.32(\alpha \mathrm{C}), \delta 40.34-38.67$ (C of DMSO-d d_{6}), $\delta 37.77(\beta \mathrm{C}), \delta$ $37.57(\beta \mathrm{C}), \delta 30.01(\beta \mathrm{C}), \delta 28.16$ (3C, primary C of Boc), $\delta 19.18\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right), \delta 18.01\left(\mathrm{C}\right.$ of $\left.\gamma \mathrm{CH}_{3}\right)$.

Sunnlamantary Matarial (FSI) for Coft Mattor

Figure S1: 300 MHz NMR Spectrum of Peptide 1

Figure S2: ESI-MS Spectrum of Peptide 1

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2009

Figure S3: ${ }^{13} \mathrm{C}$ NMR Spectrum of Peptide $\mathbf{1}$

Figure S4: 300 MHz NMR Spectrum of Peptide 2

Sunnlamentary Material(FSI) far Saft Mattor

Figure S5: ESI-MS Spectrum of Peptide 2

Figure S6: ${ }^{13} \mathrm{C}$ NMR Spectrum of Peptide 2

Figure S7: 300 MHz NMR Spectrum of Peptide 3

Figure S8: ESI-MS Spectrum of Peptide 3

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2009

Figure S9: ${ }^{13} \mathrm{C}$ NMR Spectrum of Peptide 3

Figure S10: 300 MHz NMR Spectrum of Peptide 4

Figure S11: ESI-MS Spectrum of Peptide 4

Figure S12: ${ }^{13} \mathrm{C}$ NMR Spectrum of Peptide $\mathbf{4}$

Figure S13: 300 MHz NMR Spectrum of Peptide 5

Figure S14: ESI-MS Spectrum of Peptide 5

Figure S15: ${ }^{13} \mathrm{C}$ NMR Spectrum of Peptide 5

Figure S16: ESI-MS Spectrum of Peptide $\mathbf{2}$ after recovery from dye encapsulated gel material.

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2009

Figure S17: POM images of hydrogels obtained from: (a) Peptide 1; (b) Peptide 2 and (c) Peptide 3.

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2009

Figure S18: FT-IR spectra of Xerogels obtained from: (a) Peptide 1; (b) Peptide 2 and (c) Peptide 3

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2009

Figure S19: CD spectra obtained from Peptide 2 with varying concentrations at room temperature.

Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2009

Figure S20: Chemical structures of dyes available in waste-water.

Supplementary Material (ESI) for Soft Matter

 This journal is © The Royal Society of Chemistry 2009Tables: Table S1. Major peaks found in FT-IR spectra of bulk solid, wet gel and xerogel obtained from peptides 1,2 and 3.

	Gelator Peptide	Amide A stretching $) \mathrm{cm}^{-1}$$(\mathrm{NH}$ stretching) cm^{-1}	$\begin{aligned} & \text { Amide I } \\ & \text { stretching) } \mathrm{cm}^{-1} \end{aligned}(>\mathrm{C}=\mathrm{O}$	$\begin{array}{lcc} \hline \begin{array}{l} \text { Amide } \\ \text { bending }) \end{array} \mathrm{cm}^{-1} \end{array} \quad \text { (NH }$	$\begin{aligned} & >\mathrm{C}=\mathrm{O} \text { stretching of }- \\ & \mathrm{COOH} \quad \text { (carboxylic } \\ & \text { acid) } \mathrm{cm}^{-1} \end{aligned}$	$>\mathrm{C}=\mathrm{O}$ stretching of $-\mathrm{COO}^{-}$(carboxylate anion) cm^{-1}
Bulk solid	Peptide 1	3357	1693, 1649	1524	1719	-
	Peptide 2	3353	1692, 1648	1527	1719	-
	Peptide 3	3352	1693, 1649	1528	1721	-
Wet gels obtained from	Peptide 1	3295	1686, 1638	1541	-	1397, 1570
	Peptide 2	3298	1684, 1636	1539	-	1397, 1570
	Peptide 3	3298	1690, 1636	1541	-	1398, 1571
Xerogels obtained from	Peptide 1	3332	1691, 1642	1540	-	1401, 1587
	Peptide 2	3341	1692, 1639	1543	-	1399, 1586
	Peptide 3	3343	1692, 1640	1543	-	1395, 1587

Table S2. Major Peaks found in the XRD pattern for Peptides 1, 2 \& 3.

Compounds	d-spacing ($\mathbf{\AA}$)
Peptide 1	Wet gel: 38.4, 16.43, 13.97, 3.06
	Dried gel: 23.55, 17.94, 15.94, 11.63, 10.34, 7.75, 5.45,
	$4.64,3.86,2.57,2.18$
Peptide 2	Wet gel: 39.62, 19.38, 14.57, 6.67, 4.7, 3.07
	Dried gel: 23.69, 12.20, 7.39, 4.62, 3.28, 3.20, 2.51, 2.18
Peptide 3	Wet gel: 40.13, 12.26, 4.7, 3.18, 2.49, 2.14
	Dried gel: 22.44, 11.58, 4.61, 3.13

Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2009

References.

S1. M. Bodanszky and A. Bodanszky, The Practice of Peptide Synthesis, Springer-Verlag: New York, 1984, pp 1-282.
S2. A. Banerjee, G. Palui and A. Banerjee, Soft Matter, 2008, 4, 1430-1437.
S3. S. Ray, M. G. B. Drew, A. K Das and A. Banerjee, Tetrahedron, 2006, 62, 7274-7283.

