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| have chosen to illustrate the use of this algorithm with the commercially available program
KaedaGraph™ (Synergy Software, Reading, PA, USA). This program is one of several
microcomputer data presentation and analysis programs that have been available for about a decade
and that permit thefitting of datato user-defined functions by means of the Levenberg-Marquardt
algorithm or some similar procedure.1.2 (A few others are Axum, Igor, Origin, and SigmaPlot.)
Compared with many others, KaleidaGraph is less expensive; and it isavailable in virtually identical
forms for the Macintosh and PC platforms, with files created on one usable by the other. ltsuseasa
data analysistool in the physical chemistry teaching laboratory is described el sewhere (available on
request).3 For more background on the mathematical and statistical aspects of nonlinear least
squares, the reader is directed to a recently published study of bias and inconsistency in nonlinear
fitting, and the works cited therein.4

In the first example, eight calibration points were generated at integer x values 1-8 using the
functiony = 1 + 5 x + 0.01 x2 — 0.025 x3, and were treated for constant error (s = 2.5) and for
proportional error (s = 0.14y). The KaleldaGraph (KG) data sheet for these calculationsis
illustrated herein Fig. 1. After the x values have been entered in Column O, the y values can be
generated using a"Formula Entry" window, which is opened from the "Windows" menu. In
"Formula Entry" computations, KG identifies variables by their column number, so thiscalculation is
performed with the following entry in the window:

Cl=1+5*0 + .01*C0"2 - .025*C0"3 . Q)
Columns 2 and 3 contain the s values for constant error (2.5) and proportional error, respectively;
the latter are calculated using the following "Formula Entry":
c3=cl*. 14 . 2
(Note that the column labels are not case-sensitive.)

For the computation of the error bandsillustrated in Fig. 1 of the paper, the "unknown" in Row
9 has been masked out. The data are plotted by choosing " Scatter" plot under the "Gallery" menu.
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Error bars can then be added by selecting under the "Plot” menu. The curvefit isinitiated by picking
"Genera" under the "Curve Fit" menu and then selecting one of the named fits (or adding one, if
necessary). By clicking on "Define" in the instruction box that opens, the user can either modify the
existing fit function or enter anew one. The "Define" box aso permits one to specify the
convergence criterion and to select several other options, including "Weight Data." When this option
is selected, the program prompts the user for the column containing the s valuesfor the data. 1nthe
present case, the two different weighting choices are treated by ssmply selecting the appropriate
column ("sigl" or "sig2") in turn. The program then properly calculates the weights asw;j = s=2.

Figure 2 illustrates the results from three different fits of these data. The box at upper right
gives parameters and their errorsfor afit to the same function used to generate the "data.”" To obtain
these results, the user need only type the following in the "Define Fit" box:

a + b*x + c*xM 2 + d*x" 3; a=1; b=1l; c=1; d=1 . ©)]
Note that initial values must be given for each adjustable parameter; however, in the present case
these values need only be nonzero, because the fit islinear (though not straight-line), so convergence
isassured. The results box at lower right in the figure shows the effect of recentering thefit at x = 8,
obtained by using

a + b*(x-8) + c*(x-8)" 2 + d*(x-8)" 3 4

asthefit function. [If thisisrun following thefit to Eq. (3), theinitial values need not be given, as
the program will still have the previous valuesin its memory.] Note that now the value of the
calibration function at x = 8 is a, and the error inaisthe error in the calibration function at thisx. By
altering the value of the offset from 8 to other values of interest, one can trace out the error band as a
function of x. [Thefit to Eq. (3) has aready given the error at x = 0, again asthe error in a]
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Fig. 2. Cdlibration plot shown for constant error, including results from three different user-
defined |least-squaresfits.

The third results box (inside the figure axes) shows the effect of dropping the quadratic term
from Eq. (3). Thisterm was intentionally made statistically insignificant for the sake of this
illustration. After the deletion of the quadratic term, the intercept still remains uncertain (1s) by three
times its magnitude and might aso be dropped from the fit model. Whether thisis appropriate or not
depends on the situation. If the fit model is based on some accepted theory, in which the parameters
have physica significance, such deletions can lead to systematic errorsin the remaining parameters
and their errors. Hence, if the parameters and their errors are agoa of the analysis, such deletions
should be avoided, evenif, as here, the values are statistically insignificant. On the other hand, much
calibration fitting is ad hoc in nature, with terms included to improve the quality and reliability of the
fit. Thegod of thefitisthefit function itself, not its parameters. In such a case, the deletion of
insignificant parametersis warranted. For example, in the calibration of fluorescence data, an
intercept might be included to alow for interferences from unknown contaminants in the samples and
calibrants. The observation of a statistically undefined intercept can be taken as prima facie evidence
that such interferences are not a problem, and dropping the intercept from the fit is then justified.

The quantity "Chisq" in the fit results boxes is the chi-square value, defined asc2 = S wj dj2 =
S (Fi/si)2, where dj isthe residual for the ith point, given in the present case by Fi from Eq. (8) in
the paper. Since these fitted "data" are exact, the value of c2 is of no interest here (except perhapsto
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show the dlight mismatch when the quadratic term is dropped). However, for actual data, its
behavior would provide additional guidance on the matter of keeping or dropping terms from the fit
model. The statistical properties of c2 in least-squares fitting are discussed elsewhere.1.24 For
present purposes it suffices to note that rounding or otherwise altering a fit parameter by /3 of its
standard error produces an insignificant increasein ¢2.5 Thus, dropping the intercept in the case just
discussed is supported also by statistical considerations of c2.

Next consider estimating the unknown concentration Xg and its error. For this purpose | will
use the exponential function defined in Eq. (11) of the paper, for the case of proportional error iny
("sig2"). Row 9 in the data sheet must first be unmasked for inclusion in the plot and fit. The
dummy x valuein thisrow just servesto differentiate between this value and the calibration points, as

is noted in the paper. Sincethefitisnow atruly

nonlinear one, the user must take care in the choice y = (x>8)?(a+b*(1-exp(-c*f))...
of initial parameter values, or the fit may diverge. | Value Error
The results of such afit (Fig. 3) yield avalue a] 0148968 2:34575
. b 41.8234 15.2043
of 4.19(91) for xg and its standard error. As before, ¢c| o.157038 0.108784
theintercept ain thisfit is statistically negligible. f 4.18577 0.907113
Dropping it from the model leads to the resultsin Chisa |  0.156492 NA
Fig. 4, from which xg = 4.20(87). The two models Rl 0999756 NA
thus differ negligibly in their estimation of the Fig. 3. Resultsfrom afit of the calibration
unknown in this case. In fact, this relationship dataand "unknown" to Eq. (11) in the

. . . . paper. The unknown isf.
remains true except in the extrapolation region at low

X, where the latter model (no @) yields much more

precise estimates, as expected. y = (x>8)?(b*(1-exp(-c*N)): .-
| Value Error
As has been noted in the paper, multiple b| 425464 11.1296
unknowns can be accommodated easily by just c| o0.151139| 0.0548614
entering in the data sheet additional rows like row 9, f] 4.20157 0.871858
. Chisq | 0.160719 NA
each containing adummy x value and ameasured y
_ _ _ R| 0.999750 NA
(Yo) and itserror. Each such row is unmasked in
turn, and thefit is rerun by clicking in an "update" Fig. 4. Rerunof fit of Fig. 3 without
intercept parameter.

box on the data shest.

[The user new to KG should note that the default 1abels for adjustable fit parameters are m1—
m9. If the Macro Library isloaded during installation, the alternate definitionsa=ml, b=m2, c=
m3, and d = m4 will bein place; but the user will need to enter in the library the definitions for
parameters beyond m4, e.g. the use of f (= m5) in the fitsthat yielded Figs. 3 and 4.]



y = a + b*x
Value Error
a 12.6429 0.324554
b| 0.398143| 0.00535984
Chisq 9.65257 NA
R| 0.998553 NA

Fig. 5. Resultsfrom unweighted fit
of "SC" datain Table 1 of Ref. 6.
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In all of the calculations discussed up to this point, the
y-error in the data has been assumed to be known a priori.
Thefinal example in the paper treats actual data and assumes
that the y-error is assessed a posteriori, from the data
themselves. The data of note are the 18 standard calibration
points from Table 1 of the paper by Camparia, et al.,6
describing their program ALAMIN. The "General” routine
in KG isagain used to carry out an unweighted fit of these
datato astraight line. (Thisfit can be done by selecting

"Linear" under the Curve Fit menu; however, only the "General" option provides error estimates for
the parameters.) Theresults (Fig. 5) show parameters and errors in agreement with those shown in
Fig. 1 of Ref. 6. In an unweighted fit, KG assumes s = 1 in computing "Chisg." Thus, this

y = a + b*(x-40)

Value Error

a 28.5686 0.190758

b|] 0.398143| 0.00535984
Chisq 9.65257 NA
R|] 0.998553 NA

Fig. 6. SamefitasinFig. 5,
recentered at x = 40.

quantity becomesjust S d;j2, from which the varianceiny is
estimated in the usual way, assy2 = (S di2)/n, where n
(degrees of freedom) = n—p =18 (# points) — 2 (#
parameters) here. Theresult for sy is0.77671, in agreement
with the quantity Ssin Fig. 1 of Ref. 6.

Other quantitiesin thisfigure of Ref. 6 can be
reproduced by using the polynomial recentering method and
the new algorithm. For example, "Rp" and "S(R)" are
obtained asaand (si + sy2)1/2, respectively, using the
recentering method, i.e., fittingtoy =a+ b (x —20),y =

a+ b (x —40), etc. Sampleresultsare shown inFig. 6. The quantities"Sc" are the estimated errors
in Xg for yg values obtained by averaging each group of three calibrants at agiven cin Table 1 of Ref.
6. These can be obtained using the new agorithm by running either (1) aweighted fit with all 18

y = (x>100)?(a+b*c):(a+b*x)

Value Error

a 12.6429 0.324552

b] 0.398143| 0.00535981

c 59.4187 1.22314
Chisq 16.0002 NA
R] 0.998570 NA

Fig. 7. Determination of "Sc"
(=1.2231) for "c3" in Ref. 6.

calibration valuesgivens values = sy and each yp valuein
turngivens = sy/\/§, or (2) an unweighted fit having each
yo entered in triplicate. In the latter case, however, KG
miscounts the degrees of freedom (18 instead of 16), so the
resulting errors in xo must be scaled by \/9/8 to correct for
this. Thereason for this need for different treatments for
weighted and unweighted fitsis that for the former, KG
assumes a priori data errors and computesV = A1, as
givenin Eq. (3) in the paper, while for unweighted fits, it
assumes a posteriori errors, takesweights =1, and
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computesV = sy2 A-1 with sy2 evaluated as already noted, as"Chisg'/n. Sometypical resultsfor
the "weighted" approach areillustrated in Fig. 7.
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