## Supporting information

## An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode

Zhenjing Zhuang,<sup>a</sup> Xiaodong Su,<sup>a</sup> Hongyan Yuan,<sup>a</sup> Qun Sun,<sup>b</sup> Dan Xiao\*<sup>a</sup> and Martin M.F. Choi\*<sup>c</sup>

<sup>a</sup> College of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China. E-mail: xiaodan@scu.edu.cn; Tel.: +86 28 8540 7958; Fax: +86 28 8540 7859.

<sup>b</sup> College of Life Sciences, Sichuan University, Chengdu 610065, P.R. China.

<sup>c</sup> Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P.R. China. E-mail: mfchoi@hkbu.edu.hk; Tel.: +852 3411 7839; Fax: +852 3411 7348.



**Fig. S1** SEM images of Cu(OH)<sub>2</sub> nanowires synthesised at different durations. (A) 30 s, (B) 2 min, (C) 20 min, and (D) 9 h. Scale bars: (A) 2  $\mu$ m, (B) 2  $\mu$ m, (C) 2  $\mu$ m, and (D) 10  $\mu$ m.



**Fig. S2** (A) Photographs of the mixed solution of  $CuSO_4$  aqueous solution and  $Na_2O_2$  aqueous solution at different durations. (a) 0 min, (b) 3.5 min, (c) 4 min, (d) 13 min, (e)15 min, and (f) 21min. (B) Room-temperature fluorescence spectra of the mixed solution of  $CuSO_4$  aqueous solution and  $Na_2O_2$  aqueous solution at different durations.

Explanation the mechanism for the formation of Cu(OH)<sub>2</sub> nanowires on Cu substrate

A key point is that different growth speeds of the crystal faces determine the ultimate morphology First, it is well-known that the orthorhombic Cu(OH)<sub>2</sub> with a layered structure parallel to (010) consists of olated Cu(OH)<sub>2</sub>Cu chains oriented along [100] and characterised by the square-planar coordination of the Cu<sup>2+</sup> by OH<sup>-</sup> ions with strong  $\sigma_{x^2-y^2}$  bonds. The layers are connected through H-bonding between the tetra-coordinated OH<sup>-</sup> groups and two neighbouring bi-coordinated hydroxyls. The effect of O<sub>2</sub> produced by decomposition Na<sub>2</sub>O<sub>2</sub> is perhaps to adsorb on the (010) surface, hindering the formation of hydrogen bond bridges, and thus, lowering the growth along the [010] direction.<sup>29</sup> Second, the growth of Cu(OH)<sub>2</sub> along [100] is much faster than along other directions and the [010] direction is the lowest growth direction, leading to a tendency of a wire-like structure.<sup>34</sup> As a result, a wire-like structure takes shape. As the reaction continued, the concentration of Na<sub>2</sub>O<sub>2</sub> decreased and the driving force became weaker. When Na<sub>2</sub>O<sub>2</sub> was exhausted entirely, the growth terminated and the length of Cu(OH)<sub>2</sub> nanowires remain unchanged even when the reaction time was extended (shown in Fig. S1D).



**Fig. S3** XPS spectra of CuO nanowires grown on the Cu surface. X-ray photoelectron spectrum of CuO nanowires, showing Cu  $2p_{3/2}$  and Cu  $2p_{1/2}$  at 932.8 eV and 952.4 eV, respectively. The peakfit of Cu  $2p_{3/2}$  peak revealed a main peak at 932.8 eV and accompanied by a series of satellites on the high binding energy side, 934.2, 940.9, and 943.5 eV respectively.(For the clearity, the peakfit was not shown in the figure)

| Applied potential (V) | Sensitivity ( $\mu A/\mu mol \cdot dm^{-3}$ ) |
|-----------------------|-----------------------------------------------|
| 0.28                  | 0.29                                          |
| 0.33                  | 0.49                                          |
| 0.38                  | 0.42                                          |
| 0.42                  | 0.48                                          |

Table S1 The sensitivity of the sensor at different applied potentials