Supplementary Material (ESI) for The Analyst This journal is © The Royal Society of Chemistry 2008

Electronic Supporting Information

for

Gold(III) enhanced chemiluminescence immunoassay for detection of antibody against ApxIV of

Actinobacillus pleuropneumoniae

Dehong Hu¹, Heyou Han*¹, Rui Zhou², Fei Dong¹, Weicheng Bei², Fan Jia² and Huanchun Chen²

¹College of Science, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural

University, Wuhan 430070, China. ²Division of Animal Infectious Disease in the State Key

Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural

University, Wuhan 430070, China.

¹E-mail: <u>hyhan@mail.hzau.edu.cn</u>

The Choice of Dissolve Acid

The CLIA is based on the enhancement of AuCl₄ for the luminol-NaOH system. Therefore, it is

the primary step to dissolve the gold nanoparticles from the gold nanoparticle-Rabbit anti-Pig IgG

conjugate to AuCl₄. This was achieved with the use of HCl-NaCl-Br₂ solution, which was proved

to be more efficient than other solution, such as HNO₃-HCl solution, NaCl-Br₂ solution and

HCl-NaCl solution, and so on.

The conditions of gold dissolution with the use of HCl-HNO₃ have been studied, which is shown

in Fig.S1 and Fig.S2. As the concentration of HCl increased, the signal/noise ratio increased

between 0.25 M and 3 M, and then decreased in the range of 3 to 6 M HCl (Fig.S1). Hence,

subsequent work employed 3 M HCl. Second, the signal/noise ratio increased when the

concentration of HNO₃ was increased from 0.33 to 1 M, and then decreased quickly (Fig.S5).

Thus, 1 M HNO₃ was selected for the following experiments.

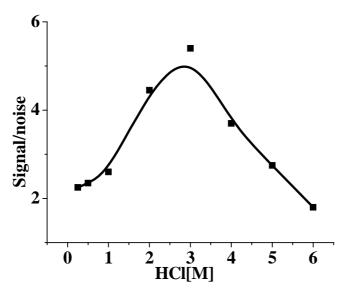


Fig.S1. Signal/noise ratio vs the concentration of HCl. Experimental conditions: $50~\mu L$ of $2.32 \times 10^{-9}~M$ gold nanoparticles (15 nm) was dissolved in $50~\mu L$ of HCl-HNO₃ solution (final concentration, different concentrations of HCl-1.0 M HNO₃), and then $90~\mu L$ of the resultant solution was injected into glass tubes containing $1.0 \times 10^{-6}~M$ luminal solution (dissolved in 0.1~M NaOH) for CL measurement.

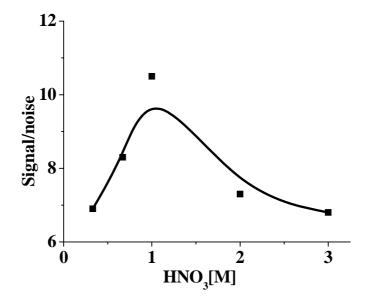


Fig.S2. Signal/noise ratio vs the concentration of HNO₃. Experimental conditions: $50 \,\mu\text{L}$ of $2.32 \times 10^{-9} \,\text{M}$ gold nanoparticles (15 nm) was dissolved in $50 \,\mu\text{L}$ of HCl-HNO₃ solution (final concentration, different concentrations of HNO₃-3.0 M HCl), and then $90 \,\mu\text{L}$ of the resultant solution was injected into glass tubes containing $1.0 \times 10^{-6} \,\text{M}$ luminal solution (dissolved in $0.1 \,\text{M}$ NaOH) for CL measurement.

The conditions of gold dissolution with the use of HCl-NaCl-Br₂ have been studied. First, as the concentration of HCl increased, the signal/noise ratio increased between 1.5×10^{-3} M and 1.2×10^{-2} M, and then maintained almost the same in the range of 1.2×10^{-2} to 1.0×10^{-1} M HCl (Fig.S3). Hence, subsequent work employed 5.0×10^{-2} M HCl. Second, the signal/noise ratio increased when the concentration of NaCl was increased from 3.7×10^{-3} to 1.5×10^{-2} M, and then decreased quickly (Fig.S4). Thus, 1.5×10^{-2} M NaCl was selected for the following experiments. Third, the signal/noise ratio increased when the concentration of Br₂ was increased and reached its maximum at 2.5×10^{-4} M. In the other hand, the signal/noise ratio decreased with increasing the concentration of Br₂ when it was higher than 2.5×10^{-4} M (Fig.S5). Thus, 2.5×10^{-4} M Br₂ was chosen for the following experiments.

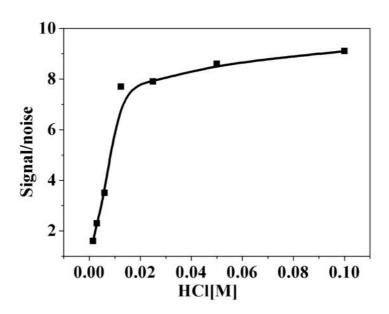


Fig.S3. Signal/noise ratio vs the concentration of HCl. Experimental conditions: $50~\mu L$ of $2.32 \times 10^{-9}~M$ gold nanoparticles (15 nm) was dissolved in $50~\mu L$ of HCl-NaCl-Br₂ solution (final concentration, different concentrations of HCl-0.5 M NaCl-1.0 \times $10^{-4}~M$ Br₂), and then $90~\mu L$ of the resultant solution was injected into glass tubes containing $1.0 \times 10^{-6}~M$ luminal solution (dissolved in 0.3~M NaOH) for CL measurement.

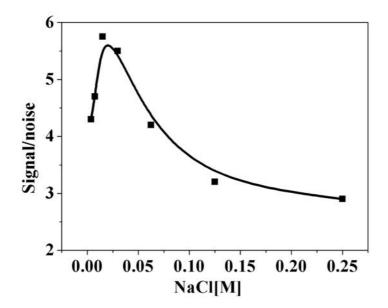


Fig.S4. Signal/noise ratio vs the concentration of NaCl. Experimental conditions: $50 \,\mu\text{L}$ of $2.32 \times 10^{-9} \,\text{M}$ gold nanoparticles (15 nm) was dissolved in $50 \,\mu\text{L}$ of HCl-NaCl-Br₂ solution (final concentration, $5.0 \times 10^{-2} \,\text{M}$ HCl-different concentrations of NaCl- $1.0 \times 10^{-4} \,\text{M}$ Br₂), and then $90 \,\mu\text{L}$ of the resultant solution injected into glass tubes containing $1.0 \times 10^{-6} \,\text{M}$ luminal solution (dissolved in $0.3 \,\text{M}$ NaOH) for CL measurement.

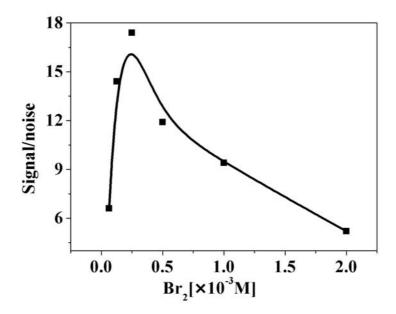


Fig.S5. Signal/noise ratio vs the concentration of Br₂. Experimental conditions: 50 μ L of 2.32 \times

 10^{-9} M gold nanoparticles (15 nm) was dissolved in 50 μ L of HCl-NaCl-Br₂ solution (final concentration, 5×10^{-2} M HCl-1.5 $\times 10^{-2}$ M NaCl -different concentrations of Br₂), and then 90 μ L of the resultant solution was injected into glass tubes containing 1.0×10^{-6} M luminal solution (dissolved in 0.3 M NaOH) for CL measurement.

The conditions of gold dissolution with the use of other acid have been studied, which is shown in Fig.S6. The HCl-NaCl-Br₂ solution is proved to be more efficient than other solution, so we choose HCl-NaCl-Br₂ solution to dissolve gold nanoparticles.

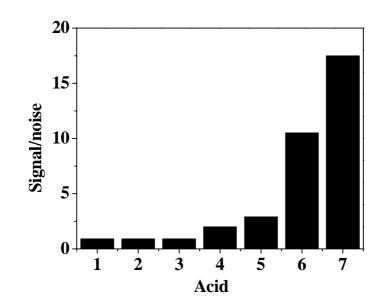


Fig.S6. Signal/noise ratio vs the kinds of acid. Experimental conditions: (1) 1M H_2SO_4 ; (2) 1M HNO_3 ; (3) $2.5 \times 10^{-4} \, Br_2$ -5.0 $\times 10^{-2} \, M$ HBr; (4) $2.5 \times 10^{-4} \, M$ Br₂-5.0 $\times 10^{-2} \, M$ HCl; (5) 3M HCl; (6) 1M HNO_3 -3M HCl and (7) $5.0 \times 10^{-2} \, M$ HCl-1.5 $\times 10^{-2} \, M$ NaCl-2.5 $\times 10^{-4} \, M$ Br₂

CL reaction conditions

CLIA for detection of antibody against ApxIV is based on the catalytic effect of $AuCl_4^-$ to alkaline luminol solution (initiating the CLIA emission) reaction. Therefore, the effect of the concentration of NaOH on the CL intensity was investigated over the range of 8.0×10^{-3} to 2 M. It was found that CL intensity reached a maximum value when NaOH concentration was 1.0×10^{-1}

M (Fig.S7). Thus, 1.0×10^{-1} M NaOH was selected for the following experiments. The effect of luminol concentration on the CL intensity was studied. The results showed that the CL signal/noise ratio increased between 5.0×10^{-9} M and 5.0×10^{-7} M with the increasing of luminol concentration, and then maintained almost the same in the range of 5.0×10^{-7} to 2.0×10^{-6} M luminol (Fig.S8). Hence, 1.0×10^{-6} M luminol was selected for subsequent work.

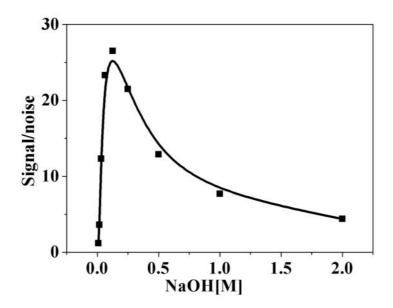
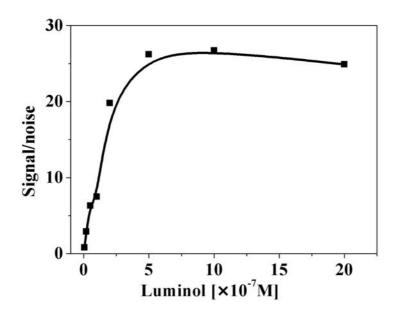



Fig.S7. Signal/noise ratio vs the concentration of NaOH. Experimental conditions: $50 \,\mu\text{L}$ of $2.32 \times 10^{-9} \,\text{M}$ gold nanoparticles (15 nm) was dissolved in $50 \,\mu\text{L}$ of HCl-NaCl-Br₂ solution (final concentration, $5.0 \times 10^{-2} \,\text{M}$ HCl- $1.5 \times 10^{-2} \,\text{M}$ NaCl- $2.5 \times 10^{-4} \,\text{M}$ Br₂), and then $90 \,\mu\text{L}$ of the resultant solution was injected into glass tubes containing $1.0 \times 10^{-6} \,\text{M}$ luminal solution (dissolved in different concentration of NaOH) for CL measurement.

Supplementary Material (ESI) for The Analyst This journal is © The Royal Society of Chemistry 2008

Fig.S8. Signal/noise ratio vs the concentration of luminol. Experimental conditions: 50 μ L of 2.32 \times 10⁻⁹ M gold nanoparticles (15 nm) was dissolved in 50 μ L of HCl-NaCl-Br₂ solution (final concentration, 5.0 \times 10⁻² M HCl-1.5 \times 10⁻² M NaCl-2.5 \times 10⁻⁴ M Br₂), and then 90 μ L of the resultant solution was injected into glass tubes containing different concentrations of luminol (dissolved in 0.1 M NaOH) for CL measurement.