SUPLEMENTARY INFORMATION

High throughput screening arrays of rhodium and iridium complexes as catalysts for intramolecular hydroamination using parallel factor analysis

Diako Ebrahimi, Danielle F. Kennedy, Barbara A. Messerle, David Brynn Hibbert*

School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

*Corresponding author

Tel: +61 2 9385 4713; Fax: +61 2 9385 6141; Email: <u>b.hibbert@unsw.edu.au</u>

Table S1. Chemical composition of 80 wells of a 96-well plate in THF. SM: starting material, PR: product, Metal Precursors: Ircod: $[Ir(COD)Cl]_2$ (COD = 1,5-cyclooctadiene), IrCO: $[Ir(CO)_2Cl]_n$, IrCOE: $[Ir(COE)_2Cl]_2$, IrCp*: $[IrCp*Cl_2]_2$ (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene), Rhcod: $[Rh(COD)Cl]_2$, RhCO: $[Rh(CO)_2Cl]_2$, RhCOE: $[Rh(COE)_2Cl]_2$, RhCp*: $[RhCp*Cl_2]_2$ and RhCp: $[RhCpCl_2]_2$) (Cp = cyclopentadiene). Ligands: bim: *bis*(*N*-methyl2-imidazolyl)methane, bpm: *bis*(1-pyrazolyl)methane, phen: 1,10-phenanthroline, ptolDAD: *N*,*N'-bis*(p-tolyl)diazabutadiene, dmptolDAD: *N*,*N'-bis*(p-tolyl)1,2-dimethyldiazabutadiene, dmptolDAD: *N*,*N'-bis*(mesityl)1,2-dimethyldiazabutadiene, mestBIAN: *bis*(2,4,6-trimethylphenylimino)acenapthene.

	1	2	3	4	5	6	7	8	9	10
A (no ligand)	Ircod NaBF₄ SM	IrCO NaBF₄ SM	IrCOE NaBF₄ SM	IrCp* NaBF₄ SM	Rhcod NaBF₄ SM	RhCO NaBF₄ SM	RhCOE NaBF₄ SM	RhCp* NaBF₄ SM	RhCp NaBF₄ SM	Rhbim SM
В	Ircod bim NaBF₄ SM	IrCO bim NaBF₄ SM	IrCOE bim NaBF₄ SM	lrCp* bim NaBF₄ SM	Rhcod bim NaBF₄ SM	RhCO bim NaBF₄ SM	RhCOE bim NaBF₄ SM	RhCp* bim NaBF₄ SM	RhCp bim NaBF₄ SM	Irbpm SM
с	Ircod bpm NaBF₄ SM	IrCO bpm NaBF₄ SM	IrCOE bpm NaBF₄ SM	lrCp* bpm NaBF₄ SM	Rhcod bpm NaBF₄ SM	RhCO bpm NaBF₄ SM	RhCOE bpm NaBF₄ SM	RhCp* bpm NaBF₄ SM	RhCp bpm NaBF₄ SM	Rhbim SM
D	Ircod phen NaBF₄ SM	IrCO phen NaBF₄ SM	IrCOE phen NaBF₄ SM	lrCp* phen NaBF₄ SM	Rhcod phen NaBF₄ SM	RhCO phen NaBF₄ SM	RhCOE phen NaBF₄ SM	RhCp* phen NaBF₄ SM	RhCp phen NaBF₄ SM	Irbpm SM
E	Ircod ptoIDAD NaBF₄ SM	IrCO ptoIDAD NaBF₄ SM	IrCOE ptoIDAD NaBF₄ SM	lrCp* ptoIDAD NaBF₄ SM	Rhcod ptoIDAD NaBF₄ SM	RhCO ptoIDAD NaBF₄ SM	RhCOE ptoIDAD NaBF₄ SM	RhCp* ptoIDAD NaBF₄ SM	RhCp ptoIDAD NaBF₄ SM	SM
F	Ircod dmptolDAD NaBF₄ SM	IrCO dmptoIDAD NaBF₄ SM	IrCOE dmptoIDAD NaBF₄ SM	lrCp* dmptolDAD NaBF₄ SM	Rhcod dmptolDAD NaBF₄ SM	RhCO dmptolDAD NaBF₄ SM	RhCOE dmptoIDAD NaBF₄ SM	RhCp* dmptolDAD NaBF₄ SM	RhCp dmptoIDAD NaBF₄ SM	SM
G	Ircod dmmestDAD NaBF₄ SM	IrCO dmmestDAD NaBF₄ SM	IrCOE dmmestDAD NaBF₄ SM	IrCp* dmmestDAD NaBF₄ SM	Rhcod dmmestDAD NaBF₄ SM	RhCO dmmestDAD NaBF₄ SM	RhCOE dmmestDAD NaBF₄ SM	RhCp* dmmestDAD NaBF₄ SM	RhCp dmmestDAD NaBF₄ SM	PR
н	Ircod mestBIAN NaBF₄ SM	IrCO mestBIAN NaBF₄ SM	IrCOE mestBIAN NaBF₄ SM	IrCp* mestBIAN NaBF₄ SM	Rhcod mestBIAN NaBF₄ SM	RhCO mestBIAN NaBF₄ SM	RhCOE mestBIAN NaBF₄ SM	RhCp* mestBIAN NaBF₄ SM	RhCp mestBIAN NaBF₄ SM	PR

Table S2. Chemical composition of 80 wells of a 96-well plate in acetone. SM: starting material, PR: product, Metal Precursors: Ircod: $[Ir(COD)CI]_2$ (COD = 1,5-cyclooctadiene), IrCO: $[Ir(CO)_2CI]_n$, IrCOE: $[Ir(COE)_2CI]_2$, IrCp*: $[IrCp*Cl_2]_2$ (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene), Rhcod: $[Rh(COD)CI]_2$, RhCO: $[Rh(CO)_2CI]_2$, RhCOE: $[Rh(COE)_2CI]_2$, RhCp*: $[RhCp*Cl_2]_2$ and RhCp: $[RhCpCl_2]_2$) (Cp = cyclopentadiene). Ligands: bim: *bis*(*N*-methyl2-imidazolyl)methane, bpm: *bis*(1-pyrazolyl)methane, phen: 1,10-phenanthroline, ptoIDAD: *N*,*N'-bis*(p-tolyl)diazabutadiene, dmptoIDAD: *N*,*N'-bis*(p-tolyl)1,2-dimethyldiazabutadiene, dmmestDAD: *N*,*N'-bis*(mesityl)1,2-dimethyldiazabutadiene, mestBIAN: *bis*(2,4,6-trimethylphenylimino)acenapthene.

	1	2	3	4	5	6	7	8	9	10
A (no ligand)	Ircod NaBF₄ SM	IrCO NaBF₄ SM	IrCOE NaBF₄ SM	lrCp* NaBF₄ SM	Rhcod NaBF₄ SM	RhCO NaBF₄ SM	RhCOE NaBF₄ SM	RhCp* NaBF₄ SM	RhCp NaBF₄ SM	Rhbim
В	lrcod bim NaBF₄ SM	IrCO bim NaBF₄ SM	IrCOE bim NaBF₄ SM	IrCp* bim NaBF₄ SM	Rhcod bim NaBF₄ SM	RhCO bim NaBF₄ SM	RhCOE bim NaBF₄ SM	RhCp* bim NaBF₄ SM	RhCp bim NaBF₄ SM	Irbpm
с	lrcod bpm NaBF₄ SM	IrCO bpm NaBF₄ SM	IrCOE bpm NaBF₄ SM	lrCp* bpm NaBF₄ SM	Rhcod bpm NaBF₄ SM	RhCO bpm NaBF₄ SM	RhCOE bpm NaBF₄ SM	RhCp* bpm NaBF₄ SM	RhCp bpm NaBF₄ SM	100% SM 0% PR
D	lrcod phen NaBF₄ SM	IrCO phen NaBF₄ SM	IrCOE phen NaBF₄ SM	lrCp* phen NaBF₄ SM	Rhcod phen NaBF₄ SM	RhCO phen NaBF₄ SM	RhCOE phen NaBF₄ SM	RhCp* phen NaBF₄ SM	RhCp phen NaBF₄ SM	76% SM 24% PR
E	lrcod ptolDAD NaBF₄ SM	IrCO ptoIDAD NaBF₄ SM	IrCOE ptoIDAD NaBF₄ SM	lrCp* ptolDAD NaBF₄ SM	Rhcod ptolDAD NaBF₄ SM	RhCO ptolDAD NaBF₄ SM	RhCOE ptoIDAD NaBF₄ SM	RhCp* ptolDAD NaBF₄ SM	RhCp ptoIDAD NaBF₄ SM	50% SM 50% PR
F	Ircod dmptoIDAD NaBF₄ SM	IrCO dmptoIDAD NaBF₄ SM	IrCOE dmptoIDAD NaBF₄ SM	lrCp* dmptoIDAD NaBF₄ SM	Rhcod dmptolDAD NaBF₄ SM	RhCO dmptoIDAD NaBF₄ SM	RhCOE dmptoIDAD NaBF₄ SM	RhCp* dmptolDAD NaBF₄ SM	RhCp dmptolDAD NaBF₄ SM	24% SM 760% PR
G	lrcod dmmestDAD NaBF₄ SM	IrCO dmmestDAD NaBF₄ SM	IrCOE dmmestDAD NaBF₄ SM	lrCp* dmmestDAD NaBF₄ SM	Rhcod dmmestDAD NaBF₄ SM	RhCO dmmestDAD NaBF₄ SM	RhCOE dmmestDAD NaBF₄ SM	RhCp* dmmestDAD NaBF₄ SM	RhCp dmmestDAD NaBF₄ SM	0% SM 100% PR
н	Ircod mestBIAN NaBF₄ SM	IrCO mestBIAN NaBF₄ SM	IrCOE mestBIAN NaBF₄ SM	IrCp* mestBIAN NaBF₄ SM	Rhcod mestBIAN NaBF₄ SM	RhCO mestBIAN NaBF₄ SM	RhCOE mestBIAN NaBF₄ SM	RhCp* mestBIAN NaBF₄ SM	RhCp mestBIAN NaBF₄ SM	Acetone only

General Procedure for the Preparation of the High Throughput Catalyst Screening Reaction plate

The 96 well reaction plates in this project were all prepared using the same method under inert conditions in an Argon filled glove bag. All of the components were added as standard solutions and the plate was sealed in a Calypso reaction blockand heated at 50 °C. After the desired reaction time the reaction block was cooled to room temperature and opened in an Ar filled glove bag. An aliquot was removed from each well using a multi-channel pipettor and the reaction block was resealed and heated further. For UV analysis the aliquot extracted was diluted with 95 % EtOH to a concentration suitable for UV spectroscopy and transferred to a Helma quartz microtitre plate. The UV spectrum was acquired for each well between 200 and 400 nm using a UV plate reader.

Procedure for the screening of hydroamination in THF

Standard solutions of all metal complexes, ligands and substrate (2-(2phenylethynyl)aniline) were prepared in THF. A standard solution of NaBF₄ was prepared in MeOH. All standard solutions were transferred to the appropriate wells using Eppendorf pipettors. The NaBF₄ standard solution was pipetted into each well (columns 1–9, 125 μ L, 4.8 mM, final conc, ~1.0 μ mol), 125 μ L of blanks (THF) were pipetted into the column 10. Metal complex standard solutions were pipetted into the appropriate wells (columns 1–9, 125 μ L, ~ 8.6 mM, final conc, ~1.1 μ mol), along with the ligand standard solutions (rows A–H, 250 μ L, ~ 8 mM, final conc, ~1.8 μ mol). Row A contained blank thf (250 μ L) as well as column 10 (125 μ L).Standard solutions of [Rh(bim)(CO)₂]BPh₄

(wells A10 and C10, 500 μ L, 4.9 mM, final conc ~2.4 μ mol) and [Ir(bpm)(CO)₂]BPh₄ (wells B10 and D10, 500 μ L, 2.6 mM, final conc ~1.3 μ mol) were pipetted followed by the substrate solution (all the wells except for G10 and H10, 125 μ L, 21 mM, final conc 2.6 μ mol). The standard solution of the product 2-phenylindole was added to the plate in wells G10/H10, respectively.As an initial analysis at 0 time 30 μ L aliquots were taken from each well, the plate was then sealed, removed from the glove bag and placed in a 50 °C oven. After 18 hours the plate was removed from the oven, cooled and opened in a glove bag filled with argon, 30 μ L aliquots were removed. For the reaction aliquots obtained at each time point, the aliquots from each well were diluted using 95% ethanol to give solutions which were 0.4 mM in substrate and 100 μ L transferred to a Helma quartz 96 well plate. UV data was acquired between 250–400 nm for each well.

Procedure for the screening of hydroamination in acetone

Standard solutions of all metal complexes, ligands and substrate were prepared in acetone. A standard solution of NaBF₄ was prepared in MeOH. All standard solutions were transferred to the appropriate wells using Eppendorf pipettors. The NaBF₄ standard solution was pipetted into each well (columns 1–9, 250 μ L, 25.6 mM, final conc. 6.4 μ mol), 250 μ L of blanks (acetone) were pipetted into the column 10. Metal complex standard solutions were pipetted into the appropriate wells (columns 1–9, 125 μ L, ~ 0.6 mM, final conc. 1.0 μ mol), along with the ligand standard solutions (rows A–H, 125 μ L, ~ 4.1 mM, final conc. 1.0 μ mol). THF blanks were pipetted into row A (250 μ L) and column 10 (125 μ L). Standard solutions of [Rh(bim)(CO)₂]BPh₄ (well A10, 500 μ L, 1.3

mM, final conc. 0.6 μ mol) and [Ir(bpm)(CO)₂]BPh₄ (well B10, 500 μ L, 1.4 mM, final conc. 0.7 μ mol) were pipetted followed by the substrate solution (columns 1–11, 125 μ L, 25.2 mM, final conc. 3.3 μ mol and 12 A and B). In the wells C10 to G10 mixtures of standard solutions of substrate (25.2 mM) and product (24.7 mM) were pipetted (well C10, 0.125 μ L, 25.2 mM substrate, well D10, 95 μ L, 25.2 mM substrate and 30 μ L, 24.7 mM product, well E10, 63 μ L, 25.2 mM substrate and 63 μ L, 24.7 mM product, well F10, 30 μ L aliquots were taken from each well for measurements at time zero. The plate was then sealed, removed from the glove bag and placed in a 50 °C oven. Aliquots taken from each well after 24 hours were diluted using 95% ethanol to give solutions which were 0.4 mM in substrate and 100 μ L of this solution was transferred to a Helma quartz 96 well plate. UV data was acquired between 250–400 nm for each well. The same procedure used on a separate set of samples at time zero, that is, without heating the plate in the oven.

Fig. S1 Residual sum of squares (RSS) of PARAFAC models with one to five components applied to the UV-Vis data of cyclization reaction of 2-(2-phenylethynyl) aniline in THF catalyzed by organometallic complexes.

Fig. S2 Residual sum of squares (RSS) of PARAFAC models with one to five components applied to the UV-Vis data of cyclization reaction of 2-(2-phenylethynyl) aniline in acetone catalyzed by organometallic complexes.

Fig. S3 Overlaid UV-Vis spectra of authentic samples of 2-(2-phenylethynyl)aniline, 2-phenyl indole, and acetone.