Supplemental Information

Phosphopeptide Enrichment on Functionalized Polymer Microspots for

MALDI-MS Analysis

Wei-Han Wang and Merlin L. Bruening*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.

Fig. S1 (a) SEM image of a microspot of PHEMA-NTA-Fe(III) brushes surrounded by a residual PDMS layer on Si, (b) EDS carbon mapping of the spot, and (c) EDS oxygen mapping of the spot.

Table S1	Phosphopeptides	that result	from	tryptic	digestion	of	β -casein	and	ovalbumin.	The
amino acid	s in parentheses re	present cle	avage	sites an	d are not p	art o	of the pep	otide	sequence.	

Phosphoprotein	osphoprotein $[M+H]^+$ Phosphoryla		Amino acid sequence			
	m/z	sites				
β-casein	2062	1	(K)FQpSEEQQQTEDELQDK			
β-casein	β-casein 2966 4		(R)ELEELNVPGEIVEpSLpSpSpSEESITR			
β-casein	β-casein 3122 4		(A)RELEELNVPGEIVEpSLpSpSpSEESITR*			
ovalbumin	2089	1	(R)EVVGpSAEAGVDAASVSEEFR			
ovalbumin	ovalbumin 2511 1		(K)LPGFGDpSIEAQCGTSVNVHSSLR			
ovalbumin	ovalbumin 2901 1		(R)FDKLPGFGDpSIEAQCGTSVNVHSSLR*			

* $4P_{3122}$ and $1P_{2901}$ are generated by unspecific cleavage and missed cleavage, respectively, of the phosphoprotein by trypsin.

Fig. S2 Transmission FTIR absorbance spectrum of a double-side polished Si wafer coated with PHEMA brushes on both sides (a), and absorbance spectra of the same sample after the following modification steps: (b) reaction with succinic anhydride (SA), (c) activation with 0.1 M *N*-hydroxysuccinimide/ *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (NHS/EDC), (d) derivatization with aminobutyl NTA and (e) immersion in 0.1 M FeCl₃ followed by rinsing with 250 mM HAc/30% acetonitrile/70% water. Reference 13 provides a detailed explanation of similar spectra of PHEMA films on Au.

Fig. S3. MALDI mass spectra of β -casein digests. The spectra were obtained (a) after enrichment on the 2-mm PHEMA-NTA-Fe(III) spot, (b, d) after enrichment on the PHEMA-NTA-Fe(III) microspot, and (c) using a conventional stainless steel MALDI plate without enrichment. The amount of β -casein digest is noted in each mass spectrum. The monophosphopeptides detected are labeled as 1P, with their S/N ratios in parentheses. Other phosphopeptide-related peaks are labeled with different symbols: $\mathbf{\nabla}$ doubly protonated phosphopeptide, $\mathbf{\bullet}$ α -S1-casein phosphopeptide, $\mathbf{\star}$ α -S2-casein phosphopeptide, \circ phosphopeptide signal after loss of 98 Da (H₃PO₄). Peak identification was facilitated by CID-MS/MS.

Fig. S4 MALDI mass spectra of ovalbumin digests after enrichment on (a, c, e) 2-mm spots of PHEMA-NTA-Fe(III) brushes, and (b, d, f) microspots of PHEMA-NTA-Fe(III) brushes. The amount of ovalbumin digest is noted in each mass spectrum. The monophosphopeptides are labeled as 1P, with their S/N ratios in parentheses. Phosphopeptides formed by loss of 98 Da (H₃PO₄) are labeled as \circ ; doubly protonated phosphopeptides are labeled as \checkmark . Peak identification was facilitated by CID-MS/MS.

Fig. S5 MALDI mass spectra of mixtures of protein digests. The spectra were obtained using enrichment on 2-mm spots of PHEMA-NTA-Fe(III) brushes using a wash-bottle rinse before matrix was added. The compositions of the digest mixtures are noted in each mass spectrum. Monophosphopeptides are labeled as 1P, with their S/N ratios in parentheses. Other phosphopeptide-related peaks are labeled with different symbols: \checkmark doubly protonated phosphopeptide, $\star \alpha$ -S2-casein phosphopeptide, and \bigcirc phosphopeptide signal after loss of 98 Da (H₃PO₄). Peak identification was facilitated by CID-MS/MS.

Determination of the amount of Fe(III) chelated in PHEMA-NTA-Fe(III) brushes:

Fe(III) ions were eluted from five single-side polished silicon wafers (2.4×1.1 cm dimensions) coated with PHEMA-NTA-Fe(III) brushes (average thickness 78 nm) by sequentially immersing the wafers in the same solution of 7.0 mL of 50 mM EDTA (pH 7.2) for 5 h with stirring (one wafer was taken out before the new one was put in). The absorbance of Fe(III) in the stripping solution was determined using a Varian Spectra AA-200 atomic absorption spectrophotometer, and the amount of Fe(III) was calculated from this absorbance using a calibration curve, which was determined by measuring the absorbance of FeCl₃ standard solutions in 50 mM EDTA.