Dual Contactless Conductivity and Amperometric Detection on Hybrid PDMS/Glass Electrophoresis Microchips

Mercedes Vázquez^{1,2}, Celeste Frankenfeld², Wendell K. Tomazelli Coltro^{2,3}, Emanuel Carrilho³, Dermot Diamond¹, Susan M. Lunte^{2,*}

 ¹ Centre for Bioanalytical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
² Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, Kansas, USA
³ Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos-SP, Brazil

Fig. S-1 Electrophoretic separation of a 50 μ M equimolar mixture of potassium, sodium and lithium chloride dissolved in water. Separation parameters: run buffer, 20 mM MES/His, pH 6.1; injection voltage, 0.8 kV; separation voltage, 1.2 kV; injection time, 1 s; separation channel effective length, ca. 35 mm. C⁴D parameters: frequency, 500 kHz; excitation voltage, 10 V_{peak-to-peak}.

Fig. S-2 Electrophoretic separation of a 25 μ M equimolar mixture of potassium, sodium and lithium chloride dissolved in water. Separation parameters: run buffer, 20 mM MES/His, pH 6.1; injection voltage, 0.8 kV; separation voltage, 1.2 kV; injection time, 3 s; separation channel effective length, ca. 35 mm. C⁴D parameters: frequency, 500 kHz; excitation voltage, 10 V_{peak-to-peak}.

Fig. S-3 Electrophoretic separation of a 100 μ M equimolar mixture of chloride, nitrate and perchlorate dissolved in run buffer. Separation parameters: run buffer, 20 mM MES/His, pH 6.1; injection voltage, -0.8 kV; separation voltage, -1.2 kV; injection time, 1 s; separation channel effective length, ca. 35 mm. C⁴D parameters: frequency, 500 kHz; excitation voltage, 10 V_{peak-to-peak}.

Fig. S-4 Electrophoretic separation of a mixture of 500 μ M NO2⁻ and 100 μ M NO3⁻ in water detected simultaneously by: A) C⁴D (frequency, 450 kHz; excitation voltage, 15 V_{peak-to-peak}; effective length, ca. 42 mm); B) amperometric detection (voltage applied to the working electrode, 850 mV; effective length, ca. 47 mm). Separation parameters: run buffer, 30 mM lactic acid-0.75 mM TTAOH, pH 3.5; injection voltage, -1.0 kV; separation voltage, -1.5 kV; injection time, 1 s.

Fig. S-5 Effective mobility-scaled electropherograms showing the separation of 5 mM NO₂⁻ and 1 mM NO₃⁻ in a standard mixture detected simultaneously by C⁴D (A) and amperometric detection (B). Other conditions as stated in Fig. 4. The transformation of the time-based x-axis in electropherograms shown in Fig. 4 into effective mobility-scale x-axis was done by considering nitrite as an internal standard (nitrite mobility ~ -69.6 x 10⁻⁹ m² V⁻¹ s⁻¹).¹

¹ J. Pospíchal, P. Gebauer, P. Boček, *Chem. Rev.*, 1989, **89**, 419.

Fig. S-6 Effective mobility-scaled electropherograms showing the separation of NO₂⁻ and NO₃⁻ resulting from the degradation of a peroxynitrite sample detected simultaneously by C⁴D (A) and amperometric detection (B). Other conditions as stated in Fig. 5. The transformation of the time-based x-axis in electropherograms shown in Fig. 5 into effective mobility-scale x-axis was done by considering nitrite as an internal standard (nitrite mobility ~ -69.6 x 10⁻⁹ m² V⁻¹ s⁻¹).¹