[Electronic Supplementary Information]

Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing

Eungjeong Kim, Sungmin Seo, Moo Lyong Seo and Jong Hwa Jung*

Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, S. Korea. Fax No.: +82-55-758-6027; E-mail:

jonghwa@gnu.ac.kr.

Table of Contents:

Title and table of contents S1
Fig. S1 TEM image of mesoporous silica S2
Fig. S2 Barrett-Joyner-Halenda(BJH) pore diameters of
(a) mesoporous silica and (b) AR-SiO ₂ ······S3
Fig. S3 Thermogravimetric analysis data of AR-SiO ₂
Fig. S4 FT-IR spectra of (a) mesoporous silica (SBA-15), and (b) AR-SiO ₂
Fig. S5 FT-IR spectra of (a) TiO ₂ nanoparticle, and (b) AR-TiO ₂ S6
Fig. S6 The colorimetric response of H_2O suspension samples of AR-SiO ₂ (5.0 mg)
in the (a) absence and the presence of (b) KCl, (c) $CaCl_2$ and (d) $SrCl_2$ S7
Fig. S7 UV-vis spectrum of AR-SiO ₂ (5.0 mg) with HgCl ₂ (5.0 equiv) in the presence of K ⁺ , Ca ²⁺ , Sr ²⁺ , Co ²⁺ , Cd ²⁺ , Pb ²⁺ , Fe ³⁺ , Cu ²⁺ and Zn ²⁺ ions
(10 equiv) at pH=7.4S8
Fig. S8 Color changes of AR-SiO ₂ (5.0 mg) in the (a) absence and
the presence of (b) HgBr ₂ , (c) Hg(NO ₃) ₂ , and (d) Hg(ClO ₄) ₂ S9
Fig. S9 Proposed structure for receptor 1 complex attached on $AR-SiO_2$ with Hg^{2+} ion S10
Fig. S10 Job's plot for AR-SiO ₂ with Hg^{2+}
Fig. S11 Calibration curve of concentration of Hg ²⁺ ion against
absorption intensity of AR-SiO ₂ (at 510 nm)
Fig. S12 UV-vis spectrum of AR-SiO ₂ (5.0 mg) in waste containing Hg^{2+} ion (2.0 μ M) at pH=7.4S13
Fig. S13 (a) UV-vis spectra of AR-SiO ₂ at different pH values and
(b) plot of pH values against absorption intensity of AR-SiO ₂ S14
Fig. S14 Image of $AR-TiO_2$ films in the (a) absence and (b) the presence of $HgCl_2 \dots S15$
Fig. S15 Calibration curve of concentration of Hg ²⁺ ion against
absorption intensity of AR-TiO ₂ films (at 492 nm)

Fig. S1 TEM image of mesoporous silica.

Fig. S2 Barrett-Joyner-Halenda(BJH) pore diameters of (a) mesoporous silica and (b) AR-SiO₂.

Fig. S4 FT-IR spectra of (a) mesoporous silica (SBA-15) and (b) AR-SiO₂.

Fig. S5 FT-IR spectra of (a) TiO_2 nanoparticle and (b) AR-TiO₂.

Fig. S6 The colorimetric response of H_2O suspension samples of **AR-SiO**₂ (5.0 mg) in the (a) absence and the presence of (b) KCI (5.0 equiv), (c) CaCl₂ (5.0 equiv) and (d) SrCl₂ (5.0 equiv).

Fig. S7 UV-vis spectrum of **AR-SiO**₂ (5.0 mg) with HgCl₂ (5.0 equiv) in the presence of K⁺, Ca²⁺, Sr²⁺, Co²⁺, Cd²⁺, Pb²⁺, Fe³⁺, Cu²⁺ and Zn²⁺ ions (10 equiv) at pH=7.4.

Fig. S8 Color changes of **AR-SiO**₂ (5.0 mg) in the (a) absence and the presence of (b) HgBr₂ (5.0 equiv), (c) Hg(NO₃)₂ (5.0 equiv) and (d) Hg(ClO₄)₂ (5.0 equiv).

Fig. S9 Proposed structure for receptor 1 complex attached on $AR-SiO_2$ with Hg^{2+} ion.

Fig. S10 Job's plot for $AR-SiO_2$ with Hg^{2+} .

Fig. S11 Calibration curve of concentration of Hg^{2+} ion against absorption intensity of AR-SiO₂ (at 510 nm).

Fig. S12 UV-vis spectrum of AR-SiO₂ (5.0 mg) in waste containing Hg²⁺ ion (2.0 μ M) at pH=7.4.

Fig. S13 (a) UV-vis spectra of AR-SiO₂ at different pH values and (b) plot of pH values against absorption intensity of AR-SiO₂.

Fig. S14 Image of AR-TiO₂ films in the (a) absence and (b) the presence of HgCl₂.

Fig. S15 Calibration curve of concentration of Hg^{2+} ion against absorption intensity of **AR-TiO**₂ films (at 492 nm).