Supplementary information

Aliphatic dipeptide tags for multi 2-plex protein quantification

Min-Soo Suh, Jongcheol Seo, T. D. Thangadurai, Young Ho Rhee, Seung Koo Shin^{*}, and Hye-Joo

Yoon*

Bio-Nanotechnology Center, Department of Chemistry, Pohang University of Science and Technology, San31 Hyoja-dong Nam-gu, Pohang, Kyungbuk 790-784, Korea

E-mail: skshin@postech.ac.kr; hjyoon@postech.ac.kr

I. Solution-phase syntheses of acid forms of aliphatic MBITs (C₆–C₈ tags)

II. Construction of yeast strains

III. LC running conditions

IV. Mass spectrometric analysis of MBIT-linked bradykinin

V. Identification and quantification using multiple MBITs

I. Solution-phase syntheses of acid forms of aliphatic MBITs (C₆–C₈ tags)

Scheme S1. Solution-phase synthesis of the acid form of C₆–C₈ tags

Materials

Acetic anhydride (Ac₂O- d_0), 2-amino-4-pentenoic acid, Boc-L-alanine, (benzotriazol-1-yloxy)tris (dimethylamino)phosphonium hexafluorophosphate (BOP), DCM, DIPEA, tetrahydrofuran (THF), methanol, TFA, 4-octene, 5-decene, 1-heptene, and Grubbs's catalyst (2nd generation) were purchased from Sigma-Aldrich. Acetic anhydride- d_6 (Ac₂O- d_6) and *N*-Fmoc-alanine- $3,3,3-d_3$ were from CDN Isotopes.

Synthesis procedure

Step 1. Acetylation of 2-amino-4-pentenoic acid: 2-Amino-4-pentenoic acid (2.0 mmol) was dissolved in water (pH 9–10, 4 mL) and Ac_2O-d_0 or $-d_6$ (4.0 mmol) was added at 0 °C. After adjusting pH to 10 by adding NaOH (8 M), the reaction mixture was stirred for 4 h at 0 °C. The reaction was terminated by adding concentrated hydrochloric acid to adjust pH to less than 2. The crude product was dissolved in methanol, filtered, and dried to recover solid 2-acetamido-4-pentenoic acid.

Step 2. Construction of intermediate: Alanine benzyl esters (alanine- d_0 benzyl ester or alanine- d_3 benzyl ester) were prepared by adding benzyl bromide to *N*-Boc-alanine and de-protecting *N*-Boc-alanine benzyl ester with TFA.¹ BOP (1.01 mmol) was added to alanine benzyl ester (0.55 mmol) in THF (5 mL) and stirred at room temperature for 30 min. DIPEA (3.36 mmol) was added at 0 °C and stirred at room temperature for 15 min. This mixture was mixed with 2-acetamido-4-pentenoic acid dissolved in anhydrous THF and stirred at room temperature overnight: Alanine- d_0 benzyl ester was mixed with 2-acet- d_0 -amido-4-pentenoic acid, while alanine- d_3 benzyl ester was mixed with 2-acet- d_0 -amido-4-pentenoic acid. After evaporating the solvent, the residue was dissolved in ethyl acetate and washed with water. The residual product was purified by silica gel flash chromatography to obtain benzyl 2-(2-acetamido-4-penteneamido) propanate.

Step 3. Olefin cross-metathesis² to vary the mass-tunable group: Benzyl 2-(2-acetamido-4penteneamido) propanate prepared in Step 2, Grubbs's catalyst, and one of alkene (4-octene for C₆-, 5decene for C₇-, or 1-heptene for C₈-tags) were added to DCM, and refluxed for 24 h at 40 °C. In the case of C₈ MBIT synthesis, 1-heptene was used because 6-dodecene was not commercially available. After removing the catalyst and solvent, the product was purified by silica gel chromatography.

Step 4. Recovery of MBIT: The reaction product prepared in Step 3 was mixed with $Pd(OH)_2$ (20 mol%) in anhydrous methanol and stirred overnight under 1 atm hydrogen gas at room temperature. After filtering out the catalyst, the product was concentrated under vacuum, followed by recrystallization using a methanol/ether mixture (1:1, v/v) to produce the acid form of MBIT reagent.

II. Construction of yeast strains

Construction of HSP82-deficient yeast strain. The haploid $hsp82\Delta$ null mutant [YHY240d1 {MAT*a* ade2-101 his3- Δ 200 leu2- Δ 1 lys2-801 trp1- Δ 63 ura3-52 hsp82 Δ ::TRP1 CFIII (CEN3.L. YPH983) HIS3 SUP11}] was constructed as follows. A PCR product containing the HSP82 ORF with a SpeI site before the start codon and a SalI site after the stop codon, was digested with these enzymes and cloned into the respective restriction sites of the yeast expression plasmid pBFG1,³ resulting in the plasmid pBFG1-

HSP82. The 1360 bp *Bgl*II-*Eco*RI fragment of the *HSP82*-coding region was replaced with a 850 bp *Bgl*II-*Eco*RI fragment containing the yeast *TRP1* gene, the resulting plasmid pBFG1-*dHSP82* was digested with *Spe*I and *Sal*I, and transformed into the isogenic wild-type strain. Chromosomal deletion of the *HSP82* gene was verified by PCR with genomic DNA of the *TRP*+ transformants.

Construction of yeast strains expressing the hemagglutinin (HA)-tagged Hsc82 protein. To generate plasmid pYHY306-HA-HSC82 expressing the hemagglutinin (HA)-tagged HSc82 under control of the endogenous HSC82 promoter, a 1370-bp XhoI-EcoRI cassette containing the HSC82 promoter (a 650-bp PCR fragment), triple HA repeats, and a 5'-595 bp fragment of HSC82 ORF (PCR fragment) was inserted into the XhoI and EcoRI sites of the yeast integrating plasmid pRS306.⁴ Plasmid pYHY306-HA-HSC82 was linearized within the HSC82 gene by HpaI digestion and transformed into the hsp82Δ deletion strain (YHY240d1) or isogenic wild-type strain by selecting colonies on uracil-minus medium. The resulting strains are YHY404 [MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1-Δ63 ura3-52 hsp82Δ::TRP1 hsc82::HA-HSC82-URA3 CFIII (CEN3.L. YPH983) HIS3 SUP11] and YHY186HAN2 [MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1-Δ63 ura3-52 hsc82::HA-HSC82-URA3 CFIII (CEN3.L. YPH983) HIS3 SUP11] and YHY186HAN2 [MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1-Δ63 ura3-52 hsc82::HA-HSC82-URA3 CFIII (CEN3.L. YPH983) HIS3 SUP11] and YHY186HAN2 [MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1-Δ63 ura3-52 hsc82::HA-HSC82-URA3 CFIII (CEN3.L. YPH983) HIS3 SUP11] and YHY186HAN2 [MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1-Δ63 ura3-52 hsc82::HA-HSC82-URA3 CFIII (CEN3.L. YPH983) HIS3 SUP11] and YHY186HAN2 [MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 trp1-Δ63 ura3-52 hsc82::HA-HSC82-URA3 CFIII (CEN3.L. YPH983) HIS3 SUP11].

III. LC running conditions

For the separation of aliphatic MBIT-linked bradykinin, LC was run for 60 min with a flow rate of 0.3 μ L min⁻¹ (solvent A, 95/5/0.1 H₂O/ACN/formic acid and solvent B, 20/80/0.1 H₂O/ACN/formic acid). The solvent gradient [A]/[B] was slowly varied from 80/20 to 30/70 between 0 and 45 min, changed to 0/100 for 5 min and maintained at 0/100 for another 5 min, and then immediately dropped to 100/0 and held at 100/0 between 55 and 60 min.

For the separation of aliphatic MBIT-linked tryptic peptides of Hsc82p, LC was run at the flow rate of 0.3 μ L min⁻¹ (solvent A, 95/5/0.1 H₂O/ACN/TFA and solvent B, 5/95/0.1 H₂O/ACN/TFA). The

gradient [A]/[B] was varied from 100/0 to 60/40 for 9 min, changed from 60/40 to 0/100 for 31 min, held at 0/100 for 5 min, and immediately dropped to 100/0 and held at 100/0 for 15 min.

References

- J. Seo, M.-S. Suh, T. D. Thangadurai, J. Kim, Y. H. Rhee, H.-J. Yoon, and S. K. Shin, *Anal. Chem.*, 2008, 80, 6145–6153.
- 2. A. K. Chatterjee and R. H. Grubbs, Org. Lett., 1999, 1, 1751–1753.
- 3. R. Yelin, D. Rotem, and S. Schuldiner, J. Bacteriol., 1999, 181, 949-956.
- 4. R. S. Sikorski and P. Hieter, Genetics, 1989, 122, 19-27.

IV. Mass spectrometric analysis of MBIT-linked bradykinin

Fig. S1 MALDI mass spectra of aliphatic (C_2 – C_8) MBIT-linked bradykinin (*N*-Ac-**X**A-RPPGFSPFR). Neither unmodified bradykinin peptides (*m*/*z* 1060.5) nor side products were detected.

Fig. S2 (A) MALDI-MS/MS spectra of singly-protonated MBIT-linked bradykinin (*N*-Ac-XA-RPPGFSPFR) obtained using TOF/TOF (Applied Biosystems 4700 Proteomics Analyzer, Foster City, CA) and (B) ESI-MS/MS spectra of doubly-protonated MBIT-linked bradykinin obtained using Q-TOF (Waters Q-TOF Premiere, Manchester, UK). The a, b, and y-type ions are colored in green, magenta, and blue, respectively.

V. Identification and quantification using multiple MBITs

peptide sequence	<i>m</i> / <i>z</i> of unmodified peptide	number of modification ^c	$L/H \text{ ratio}^a (LC \text{ elution time})^b$		
			C_6 -tag Hsp82p + 39 °C	C_7 -tag Hsp82p = 30 °C	C_8 -tag Hsn82n - 39 °C
VI FIR	629.40	1/1	$15902p^{-1}, 59^{-1}$	$0.87 \pm 0.18(49.2)$	$136 \pm 0.18(49.7)$
VLLIK	029.40	1/1	1.38 ± 0.24 (44.0)	$0.87 \pm 0.18 (49.2)$	$1.30 \pm 0.18 (49.7)$
EIFLR	677.40	1/1	1.54 ± 0.33 (50.0)	0.89 ± 0.30 (50.1)	1.25 ± 0.20 (50.0)
LLDAPAAIR	939.56	1/1	1.57 ± 0.23 (45.2)	0.90 ± 0.15 (48.3)	1.45 ± 0.18 (49.4)
LGVHEDTQNR	1168.57	1/1	1.50 ± 0.19 (34.3)	$0.82 \pm 0.06 \ (37.1)$	1.46 ± 0.12 (39.6)
QLETEPDLFIR	1360.71	1/1	$1.71 \pm 0.28 \ (42.5)$	$0.86 \pm 0.28 \ (44.6)$	$1.50 \pm 0.17 \ (46.3)$
average			1.57 ± 0.11	0.84 ± 0.05	1.42 ± 0.07
optical imaging			1.60	0.85	1.38

Table S1. Quantification of Hsc82p expressed under four different states using aliphatic C₆–C₈ tags and LC-MALDI MS/MS

^{*a*}The ratios of the amount of the Hsc82p expressed under various conditions to that obtained from normal condition (Hsp82p +, 30 °C) are presented. The average and standard deviation of the ratio of each LC fraction are shown.

^bThe number in parenthesis represents the average LC-elution time.

c (The number of tag)/(the total number of possible modification) is given. The total number of possible modification equals to the number of primary amines in a given peptide sequence.

peptide sequence		de novo sequencing res	ults ^a
(m/z)	type of MBIT	identified sequence ^b	confidence (%)
VLEIR (629.40)	C ₆	<u>V[*]LEIR</u>	99
	C_7	<u>V[*]LEIR</u>	62
	C_8	<u>V[*]LEIR</u>	82
EIFLR (677.40)	C_6	<u>E[*]IFLR</u>	98
	C_7	<u>E[*]IFLR</u>	40
	C_8	<u>E[*]IFLR</u>	91
LLDAPAAIR (939.56)	C_6	<u>L[*]LDAPAAIR</u>	87
	C_7	<u>L[*]LDAPAAIR</u>	97
	C_8	<u>L[*]LDAPAAIR</u>	99
LGVHEDTQNR (1168.57)	C_6	<u>L[*]GVHEDT</u> AG <u>NR</u>	99
	C_7	<u>L[*]GVHEDT</u> AG <u>NR</u>	99
	C_8	<u>L[*]GVHEDT</u> AG <u>NR</u>	99
QLETEPDLFIR (1360.71)	C_6	<u>Q[*]LETEPDLFIR</u>	99
	C_7	<u>Q[*]LETEPDLFIR</u>	50
	C_8	<u>Q[*]LETEPDLFIR</u>	81

Table S2. De novo sequencing of MBIT-linked tryptic peptides of Hsc82p

^{*a*}De novo sequencing was performed using PEAKS 4.5 (Bioinformatics Solutions Inc., Ontario, Canada) with a mass tolerance of 0.1 Da for both the precursor and fragment ions. Each MBIT conjugation was considered as a variable modification at the N-terminal amine and/or lysine.

^bAsterisk denotes the site of MBIT labeling. The amino acid assigned with greater than 90% confidence is marked italic and the correct sequence is underlined.

Table S3. Mascot search results from multi 2-plex quantification using aliphatic MBITs^{*a*}

MOWSE score ^b	protein ID	description
144	HSC82	ATP-dependent molecular chaperone HSC82
140	HSP82	ATP-dependent molecular chaperone HSP82
28	HSM3	DNA mismatch repair protein HSM3

^{*a*}Each MBIT conjugation was considered as an optional modification at the N-terminal amine and/or lysine. The database search was performed in SWISS-PROT with the taxonomy of *Saccharomyces cerevisiae* (bakers' yeast). The error tolerance was set to 50 ppm and 0.1 Da for the precursor and product ions, respectively.

^bScores greater than 51 are considered to be significant in the given search conditions.