Electronic Supplementary Information (ESI)

Displacement Method to Develop Highly Sensitive and Selective Chemosensor for the Fluorescent and Colorimetric Sensing of Sulfide anion †

Xiaoding Lou, Honglei Mu, Rui Gong, Enqin Fu, Jingui Qin, and Zhen Li*

Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan, 430072, China. Fax: 86 27 68756757; Tel: 86 27 62254108; E-mail: <u>lizhen@whu.edu.cn</u>.

Experimental Section

Materials and Instrumentations

Compound **1** was obtained following literature procedures.¹ All reagents were of analytical reagent grade and used without further purification. Doubly distilled water was used for all experiments. Na₂S, KH₂PO₄, Na₂SO₃, NaHSO₃, Na₂SO₄, KClO₄, KCl, NaBr, KI, NaF, NaIO₃, K₂HPO₄, K₃PO₄·3H₂O, K₂C₂O₄·H₂O, K₂CO₃, NaOAc, S₂O₃²⁻, NaCN and Na₄P₂O₇ were purchased from Sinopharm Chemical Reagent Beijing Co., Ltd. UV-visible spectra were obtained using a Shimadzu UV-2550 spectrometer, and the pH values were determined by using a DELTA 320 PH dollar. Photoluminescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer.

Preparation of solutions of metal ions and anions

0.1 mmol of each inorganic salt (Na₂S, 7.8 mg; KH₂PO₄, 13.6 mg; Na₂SO₃, 12.6 mg; NaHSO₃, 10.4 mg; Na₂SO₄, 14.2 mg; KClO₄, 10.0 mg; KCl, 7.4 mg; NaBr, 10.2 mg; KI, 16.6mg; NaF, 4.2 mg; NaIO₃, 19.8mg; K₂HPO₄, 17.4 mg; K₃PO₄·3H₂O, 21.2 mg; K₂C₂O₄·H₂O, 18.4mg; K₂CO₃, 13.8 mg; NaOAc, 8.2 mg; NaCN, 4.9mg; Na₄P₂O₇, 26.6 mg;) was dissolved in distilled water (10 mL) to afford 1×10^{-2} mol/L aqueous solution. The stock solutions could be diluted to desired concentrations with water when needed.

UV absorption changes of compound 1 with Cu²⁺.

Compound **1** was dissolved in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). UV absorption changes of compound **1** (2.0×10^{-5} mol/L and 1.0×10^{-5} mol/L) were recorded before and after the addition of Cu²⁺ to the solution of compound **1**.

UV absorption changes of compound $1+Cu^{2+}$ with S^{2-} .

The solution of Na₂S (1×10^{-2} mol/L) was prepared in distilled water. A solution of compound **1** in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) was placed in a quartz cell (10.0 mm width) and the UV absorption spectrum was recorded. After the solution of Cu²⁺ was added to the solution of compound **1**, the solution of Na₂S was introduced in portions and the UV absorption changes were recorded at room temperature each time.

UV absorption changes of compound $1+Cu^{2+}$ with other anions.

The solutions of anions were prepared in distilled water. A solution of compound **1** in H_2O/CH_3OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) was placed in a quartz cell (10.0 mm width) and the UV absorption spectrum was recorded. UV absorption changes of the solution of compound **1** and Cu²⁺ were recorded before and after the addition of anions to the solution of complex **1**.

UV absorption changes of compound $1+Cu^{2+}$ with S^{2-} and other anions.

The UV absorption changes of the solution of compound **1** and Cu^{2+} were recorded before and after the addition of Na₂S and all the other anions.

Fluorescence intensity changes of 1 with Cu²⁺

Compound 1 was dissolved in H_2O/CH_3OH (3:1, v/v, Britton-Robinson buffer, pH = 7.1).

fluorescence intensity changes of compound **1** (1.0×10^{-5} mol/L, 2.0×10^{-6} mol/L and 5.0×10^{-6} mol/L) were recorded before and after the addition of Cu²⁺ to the solution of compound **1**.

Fluorescence intensity changes of compound $1+Cu^{2+}$ with S^{2-} .

The solution of Na₂S (1×10^{-2} mol/L) was prepared in distilled water. A solution of compound **1** in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) was placed in a quartz cell (10.0 mm width) and the Fluorescence spectrum was recorded. After the solution of Cu²⁺ was added to the solution of compound **1**, the solution of Na₂S was introduced in portions and the fluorescence intensity changes were recorded at room temperature each time.

Fluorescence intensity changes of compound $1+Cu^{2+}$ with other anions.

The solutions of anions were prepared in distilled water. A solution of compound **1** in H_2O/CH_3OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) was placed in a quartz cell (10.0 mm width) and the Fluorescence spectrum was recorded. fluorescence intensity changes of the solution of compound **1** and Cu²⁺ were recorded before and after the addition of anions to the solution of complex **1**.

Fluorescence intensity changes of compound $1+Cu^{2+}$ with S²⁻ and other anions.

The fluorescence intensity changes of the solution of compound **1** and Cu^{2+} were recorded before and after the addition of Na₂S and all the other anions.

Fluorescence intensity changes of compound 1 with H₂O

The fluorescence intensity changes of the solution of compound 1 were recorded before and after the addition of H_2O .

compound	CuS	CuSe	Cu(OH) ₂	Cu ₃ (PO ₄) ₂	CuCO ₃
k _{sp}	6.3×10 ⁻³⁶	7.94×10 ⁻⁴⁹	4.8×10 ⁻²⁰	1.30×10 ⁻³⁷	2.34×10 ⁻¹⁰
compound	Cu(IO ₃)2·H ₂ O	CuCrO ₄	CuC ₂ O ₄	Cu ₂ [Fe(CN) ₆]	Cu ₂ S
k _{sp}	7.4×10 ⁻⁸	3.6×10 ⁻⁶	4.43×10 ⁻¹⁰	1.3×10 ⁻¹⁶	2.5×10 ⁻⁴⁸
compound	CuCN	CuCl	CuBr	CuI	CuSCN
k _{sp}	3.2×10 ⁻²⁰	1.2×10 ⁻⁶	5.3×10 ⁻⁹	1.1×10 ⁻¹²	4.8×10 ⁻¹⁵

Table S1 Solubility Products of Undissolved Compounds

Reference.

(1) David R. Lide, Handbook of Chemistry and Physics, 78th. edition, 1997-1998.

(2) J. A. Dean Ed. Lange's Handbook of Chemistry, 13th. Edition, 1985.

Fig. S1 Fluorescence Emission spectra of **1** (10 μ M) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of H₂O. Excitation wavelength (nm):451.

Fig. S2 Fluorescence Emission spectra of **1** (2 μ M) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of H₂O. Excitation wavelength (nm):451.

Fig. S3 Fluorescence Emission spectra of **1** (5 μ M) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of H₂O. Excitation wavelength (nm):451.

Fig. S4a Fluorescence Emission spectra of **1** (10 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm):451.

Fig. S4b Fluorescence Emission difference of **1** (10 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm):451.

Fig. S4c Fluorescence Emission difference of **1** (10 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm):451.

Fig. S5a Fluorescence Emission spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S5b Fluorescence Emission difference of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S5c Fluorescence Emission difference of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S6a Fluorescence Emission spectra of **1** (2 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm): 451.

Fig. S6b Fluorescence Emission difference of 1 (2 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm): 451.

Fig. S6c Fluorescence Emission difference of **1** (2 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm): 451.

Fig. S7a Fluorescence Emission spectra of **1** (2 μ M) and Cu²⁺ (1.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S7b Fluorescence Emission difference of **1** (2 μ M) and Cu²⁺ (1.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S7c Fluorescence Emission difference of **1** (2 μ M) and Cu²⁺ (1.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S8a Fluorescence Emission spectra of **1** (5 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm): 451.

Fig. S8b Fluorescence Emission difference of 1 (5 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm): 451.

Fig. S8c Fluorescence Emission difference of **1** (5 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). Excitation wavelength (nm): 451.

Fig. S9a Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S9b Fluorescence Emission difference of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S9c Fluorescence Emission difference of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻. Excitation wavelength (nm): 451.

Fig. S10a Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S₂O₃²⁻. Excitation wavelength (nm):451.

Fig. S10b Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of H₂PO₄⁻. Excitation wavelength (nm): 451.

Fig. S10c Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of SO₃²⁻. Excitation wavelength (nm): 451.

Fig. S10d Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of HSO₃⁻. Excitation wavelength (nm): 451.

Fig. S10e Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of SO₄²⁻. Excitation wavelength (nm): 451.

Fig. S10f Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of ClO₄⁻. Excitation wavelength (nm): 451.

Fig. S10g Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of I⁻. Excitation wavelength (nm): 451.

Fig. S10h Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of Br⁻. Excitation wavelength (nm): 451.

Fig. S10i Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of Cl⁻. Excitation wavelength (nm): 451.

Fig. S10j Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of F⁻. Excitation wavelength (nm): 451.

Fig. S10k Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of IO₃⁻. Excitation wavelength (nm): 451.

Fig. S10I Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of HPO₄²⁻. Excitation wavelength (nm): 451.

Fig. S10m Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of PO₄³⁻. Excitation wavelength (nm): 451.

Fig. S10n Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of C₂O₄²⁻. Excitation wavelength (nm): 451.

Fig. S10o Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of CO₃²⁻. Excitation wavelength (nm): 451.

Fig. S10p Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of AcO⁻. Excitation wavelength (nm): 451.

Fig. S10q Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of CN⁻. Excitation wavelength (nm): 451.

Fig. S10r Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of P₂O₇⁴⁻. Excitation wavelength (nm): 451.

Fig. S11a Fluorescence emission response profiles of **1** (5 μ M)+Cu²⁺(2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). The concentration of different anions were 4.5×10⁻⁵ mol/L, [S²⁻]=9.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S11b Fluorescence emission response profiles of **1** (5 μ M)+Cu²⁺(2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). The concentration of different anions were 2.7×10⁻⁵ mol/L, [S²⁻]=9.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S12 Fluorescence emission response profiles of **1** (5 μ M)+Cu²⁺(2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1). The concentration of different anions were 0.9×10⁻⁵ mol/L, [S²⁻]=9.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S13 Fluorescence Emission spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. Excitation wavelength (nm): 451.

Fig. S14 Fluorescence Emission spectra of **1** (2 μ M) and Cu²⁺ (1.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. Excitation wavelength (nm): 451.

Fig. S15 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. Excitation wavelength (nm): 451.

Fig. S16 Fluorescence Emission spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. The concentration of S²⁻ was 2.0×10⁻⁵ mol/L. Excitation wavelength (nm): 451.

Fig. S17 Fluorescence Emission spectra of **1** (2 μ M) and Cu²⁺ (1.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. The concentration of S²⁻ was 4.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S18 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. The concentration of S²⁻ was 9.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S19 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. The concentration of S²⁻ was 9.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S20 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of anions. The concentration of S²⁻ was 9.0×10⁻⁶ mol/L. Excitation wavelength (nm): 451.

Fig. S21a Absorption spectra of **A** (10 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1).

Fig. S21b Absorption difference of **1** (10 μ M) in the presence of different concentrations of Cu²⁺ in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1).

Fig. S22a Absorption spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻.

Fig. S22b Absorption difference of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻.

Fig. S23a Absorption spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different anions.

Fig. S24b Absorption spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different anions . The concentration of S²⁻ was 2.0×10⁻⁵ mol/L.

Fig. S25a Absorption spectra of **1** (20 μ M) in the presence of different concentrations of Cu (II) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1).

Fig. S25b Absorption difference of **1** (20 μ M) in the presence of different concentrations of Cu (II) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1).

Fig. S26a Absorption spectra of **1** (20 μ M) and Cu²⁺ (1.2×10⁻⁵ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻.

Fig. S26b Absorption difference of **1** (20 μ M) and Cu²⁺ (1.2×10⁻⁵ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of S²⁻.

Fig. S27 Absorption spectra of **1** (20 μ M) and Cu²⁺ (1.2×10⁻⁵ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different anions.

Fig. S28 Absorption spectra of **1** (20 μ M) and Cu²⁺ (1.2×10⁻⁵ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different anions . The concentration of S²⁻ was 3.0×10⁻⁵ mol/L.

Fig. S29 Absorption spectra of **1** (10 μ M) and Cu²⁺ (4.0×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different anions. The concentration of S²⁻ was 2.0×10⁻⁵ mol/L.

Fig. S30 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of the east lake water. Excitation wavelength (nm): 451.

Fig. S31 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of lake water spiked with sulfide for the first time. Excitation wavelength (nm): 451.

Fig. S32 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of lake water spiked with sulfide for the second time. Excitation wavelength (nm): 451.

Fig. S33 Fluorescence Emission spectra of **1** (5 μ M) and Cu²⁺ (2.7×10⁻⁶ mol/L) in H₂O/CH₃OH (3:1, v/v, Britton–Robinson buffer, pH = 7.1) in the presence of different amounts of east lake water spiked with sulfide for the third time. Excitation wavelength (nm): 451.

An excellent linear relationship was obtained between fluorescence intensity and the sulfide ion concentration in the range from 3.0×10^{-7} to 8×10^{-6} M. The regression equation was y = 0.52627 + 2.7423x ($R^2 = 0.9869$), where y is fluorescence intensity I/I₀, and x is the concentration of sulfide ion in deionized water.

S ²⁻ added (×10 ⁻⁶ mol/L)	I/I ₀	Determination of $S^{2-}(\times 10^{-6} \text{mol/L})$	RSD %	S^{2-} added (×10 ⁻⁶ mol/L)	I/I ₀	Determination of $S^{2-}(\times 10^{-6} \text{mol/L})$	RSD %
3	7.49	2.54		5	11.56	4.02	
3	7.38	2.50	2.18	5	11.15	3.87	1.93
3	7.67	2.61		5	10.93	3.79	

Table S1. Determination of S^{2-} in sulfide- spiked lake water.