SUPPLEMENTARY INFORMATION

Sample No.	Producing area	Medical parts		
		Dysosma	Sinopodophyllum	Diphylleia
		versipellis	hexandrum	sinensis
1	Changsha, Hunan	Root	Rhizome	Rhizome
2	Xiangtan, Hunan	Root	Rhizome	Rhizome
3	Zhangjiajie, Hunan	Root	Rhizome	Rhizome
4	Guilin, Guangxi	Root	Rhizome	Rhizome
5	Yulin, Guangxi	Root	Rhizome	Rhizome
6	Bozhou, Anhui	Root	Rhizome	Rhizome
7	Shenzhen, Guangzhou	Root	Rhizome	Rhizome
8	Zhangshu, Jiangxi	Root	Rhizome	Rhizome
9	Xi'an, Shanxi	Root	Rhizome	Rhizome
10	Xianning, Hubei	Root	Rhizome	Rhizome

 Table S1 Raw materials from different regions used in this experiment.

Ionic liquids ^a				¹ H NI	MR spectra (δ , ×	$10^{-6})^{b}$			
	2-Н	3-Н	4-H	5-H	6-Н	7-H	8-H	9-Н	10-Н
[bmim]Cl	10.31(s, 1H)	_	7.50(d, <i>J</i> =2.0	7.60(d, <i>J</i> =2.0	4.11(s, 3H)	4.34(t, <i>J</i> =7.2	1.89(m, 2H)	1.3(q, <i>J</i> =7.6	0.95(t, <i>J</i> =7.2
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)		<i>Hz</i> , 2H)	<i>Hz</i> , 3H)
[bmim]Br	9.87(s, 1H)	_	7.40(d, <i>J</i> =2.0	7.52(d, <i>J</i> =2.0	3.91(s, 3H)	4.14(t, <i>J</i> =7.2	1.68(m, 2H)	1.15(q, <i>J</i> =7.6	0.73(t, <i>J</i> =7.2
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)		<i>Hz</i> , 2H)	<i>Hz</i> , 3H)
[bmim]OTs	10.18(s, 1H)	_	7.48(d, <i>J</i> =1.2	7.60(d, <i>J</i> =1.2	4.11(s, 3H)	4.33(t, <i>J</i> =7.2	1.90(m, 2H)	1.37(q, <i>J</i> =7.6	0.96(t, <i>J</i> =7.2
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)		<i>Hz</i> , 2H)	<i>Hz</i> , 3H)
[bmim]OTM	9.97(s, 1H)	_	7.35(d, <i>J</i> =1.6	7.42(d, <i>J</i> =1.6	4.09(s, 3H)	4.31(t, <i>J</i> =7.4	1.90(m, 2H)	1.26(t, <i>J</i> =7.2	0.97(t, <i>J</i> =7.4
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)		<i>Hz</i> , 2H)	<i>Hz</i> , 3H)
[bmim][BF ₄]	10.16(s, 1H)	_	7.55(d, <i>J</i> =2.0	7.66(d, <i>J</i> =2.0	4.13(s, 3H)	4.35(t, <i>J</i> =7.2	1.91(m, 2H)	1.38(q, <i>J</i> =7.6	0.96(t, <i>J</i> =7.2

 Table S2 The chemical shifts of ¹H NMR spectra for ionic liquids

			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)		<i>Hz</i> , 2H)	<i>Hz</i> , 3H)
[emim][BF ₄]	10.16(s, 1H)	_	7.46(d, <i>J</i> =2.0	7.58(d, <i>J</i> =2.0	4.10(s, 3H)	4.34(q, <i>J</i> =7.2	1.51(t,J=7.2		
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)	<i>Hz</i> , 3H)		
[pmim][BF ₄]	10.17(s, 1H)	_	7.58(s, 1H)	7.66(s, 1H)	4.13(s, 3H)	4.32(t, <i>J</i> =7.2	1.98(m, 2H)	0.99(t, J=7.2	
						<i>Hz</i> , 2H)		<i>Hz</i> , 3H)	
[hmim][BF ₄]	9.96 (s, 1H)	_	7.55(d, <i>J</i> =1.6	7.70(d, <i>J</i> =1.6	4.12(d, <i>J</i> =4.4	4.33(t, J=7.2	2.04(m, 2H)	1.32(m, 2H)	1.29(m, 2H)
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)	<i>Hz</i> ,3H)	<i>Hz</i> , 2H)			
[omim][BF ₄]	10.17(s, 1H)	_	7.55(s, 1H)	7.72(s, 1H)	4.15(m, 3H)	4.36(m, 2H)	1.93(m, 2H)	1.27(m, 2H)	1.27(m, 2H)
[demim][BF ₄]	10.24(s, 1H)	_	7.42(d, <i>J</i> =2.0	7.58(d, <i>J</i> =2.0	4.13(s, 3H)	4.32(t, <i>J</i> =7.2	1.90(m, 2H)	1.29(m, 2H)	1.27(m, 2H)
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)			
[amim][BF ₄]	9.20(s, 1H)	_	7.39(d, <i>J</i> =2.0	7.29(d, <i>J</i> =2.0	3.92(m, 3H)	4.90(d, <i>J</i> =6.8	6.01(m, 1H)	5.49(m, 1H)	
			<i>Hz</i> , 1H)	<i>Hz</i> , 1H)		<i>Hz</i> , 2H)		5.46(m, 1H)	
[bpy][BF ₄]	9.55(d,	8.20(d,	8.58(m, 1H)	8.20(d, <i>J</i> =7.2	9.55(d, <i>J</i> =6.0	4.50(t, <i>J</i> =7.2	2.05(m, 2H)	1.43(m, 2H)	0.96(t, <i>J</i> =7.2

	J=6.0	<i>J</i> =7.2		<i>Hz</i> , 1H)	<i>Hz</i> ,1H)	<i>Hz</i> , 2H)	<i>Hz</i> , 3H)
	<i>HZ</i> , 1H)	<i>Hz</i> , 1H)					
	11 - H	12-H	13-Н	14-H	15-H	16-Н	
[hmim][BF ₄]	1.91(m, 2H)	0.87(t, <i>J</i> =6.4					
		<i>Hz</i> , 3H)					
[omim][BF ₄]	1.27(m, 2H)	1.27 (m, 2H)	1.34(m, 2H)	0.89(t, <i>J</i> =3.2			
				<i>Hz</i> , 3H)			
[demim][BF ₄]	1.27(m, 2H)	1.27(m, 2H)	1.32(m, 2H)	1.25(m, 2H)	1.33(m, 2H)	0.88(t, <i>J</i> =7.2	
						<i>Hz</i> , 3H)	
^{<i>a</i>} All of the ILs were dissolved in CDCl ₃ . ^{<i>b</i>} ¹ H NMR spectra were recorded at 100MHz and reported downfield from trimethylsilane (TMS). Peak shape							

were abbreviated as s=singlet, d=doublet, quart =quartet, t=triplet and m = multiplet.

Ionic liquids ^a						¹³ C N	NMR sp	ectra (δ,	×10 ⁻⁶) ^b						
	2-C	3-C	4-C	5-C	6-C	7 - C	8-C	9-C	10 - C	11 - C	12 - C	13 - C	14 - C	15 - C	16-C
[bmim]Cl	137.28		121.79	123.53	36.34	49.47	31.91	19.20	13.23						
[bmim]Br	137.05		121.93	123.57	36.63	49.69	32.00	19.30	13.32						
[bmim]OTs	137.16		121.90	123.54	36.58	49.68	32.01	19.31	13.34						
[bmim]OTM	137.22		121.85	123.56	36.60	49.68	32.00	19.30	13.33						
[bmim][BF ₄]	137.02		121.95	123.56	36.56	49.67	31.98	19.28	13.29						
[emim][BF ₄]	137.11		121.88	123.55	36.48	48.32	13.40								
[pmim][BF ₄]	137.15		121.88	123.56	36.62	49.69	21.03	13.45							
[hmim][BF ₄]	136.51		121.80	123.56	36.39	49.69	29.85	25.48	30.70	22.00	13.58				
[omim][BF ₄]	136.76		121.80	123.57	36.41	49.77	29.98	25.89	28.68	28.60	31.32	22.23	13.73		
[demim][BF ₄]	137.30		121.77	123.54	36.65	50.06	30.18	26.14	30.18	29.11	29.32	28.86	31.70	22.52	13.98

Table S3 The chemical shifts of ¹³C NMR spectra for ionic liquids

5

[amim][BF4]138.03121.98123.6236.6753.12133.1115.5[bpy][BF4]145.15128.42145.02128.42145.1561.6533.6819.1913.41

^{*a*} All of the ILs were dissolved in CDCl₃. ^{*b* 13}C NMR spectra were recorded at 400MHz and reported downfield from trimethylsilane (TMS)

Table S4 ANOVA table for the (a)*Dysosma versipellis*, (b)*Sinopodophyllum hexandrum* and (c)*Diphylleia sinensis*.

Source	Sum Sq	df	Mean Sq	F-value	Significance ^{<i>a</i>}	
(a) Dysosma versip	pellis					
ILs concentration	123.3	2	61.60	57.60	*	
Solid/liquid ratio	648.2	2	324.1	302.9	**	
Temperature	2.100	2	1.100	1.100		
Irradiation time	3.100	2	1.600	1.500		
Error ^b	2.100	2	1.100			
(b) Sinopodophyllı	ım hexandru	т				
ILs concentration	576.1	2	288.1	5.600		
Solid/liquid ratio	904.4	2	452.2	9.800	-	
Temperature	233.1	2	116.6	2.300		
Irradiation time	102.9	2	51.50	1.000		
Error	102.9	2	51.50			
(c) Diphylleia sine	nsis					
ILs concentration	25.40	2	12.70	9.500	-	
Solid/liquid ratio	3248	2	1624	1212	**	
Temperature	54.50	2	27.30	20.40	*	
Irradiation time	2.700	2	1.300	1.000		
Error	2.700	2	1.300			
^{<i>a</i>} The critical F-value is 99.01 (P<0.01,**), 19.00 (P<0.05,*) and 9.00 (P<0.1,-). ^{<i>b</i>}						

The factor with minimum R value was selected as error term.

Table S5 Infrared absorption data of different components in Dysosma versipellis,

Chemical Compositions	Wavenumber (cm ⁻¹)
Podophyllotoxin ^{<i>a</i>}	3460 (O-H), 1774 (C=O), 1590, 1480 (Ar-H), 1250, 1130,
	1040 (C-O-C), 930 (OCH ₂ O)
Deoxypodophyllotixin ^{<i>a</i>}	1760 (C=O), 1590, 1500 (Ar-H), 1240, 1125 (C-O-C), 930
	(OCH ₂ O)
Isopicropodophyllone ^{<i>a</i>}	1773, 1685 (C=O), 1593, 1480 (Ar-H), 1270, 1130,1040
	(C-O-C), 935 (OCH ₂ O)
Dehydropodophyllotoxin ^{<i>a</i>}	1705 (C=O), 1590, 1465 (Ar-H), 1240, 1130, 1045
	(C-O-C), 940 (OCH ₂ O)
β -peltatin ^c	3500~3200 (O-H), 1760 (C=O), 1630, 1590, 1500 (Ar-H),
	1250, 1130 (C-O-C), 930 (OCH ₂ O)
Diphyllin ^d	1230, 1130, 1040 (C-O-C), 930 (OCH ₂ O)
Picropodophyllin ^{<i>a</i>}	3445 (O-H), 1770 (C=O), 1593, 1480 (Ar-H), 1250,1130,
	1040 (C-O-C), 930 (OCH ₂ O)
Podophyllotoxone ^{<i>a</i>}	1780, 1668 (C=O), 1590, 1480 (Ar-H), 1250, 1130, 1035
	(C-O-C), 930 (OCH ₂ O)
4'-demethylpodophyllotoxin ^b	3505, 3480 (O-H), 1765 (C=O), 1620, 1490 (Ar-H), 1250,
	1040 (C-O-C), 930 (OCH ₂ O)
Kaempferol ^b	3357 (O-H), 1655 (C=O), 1605, 1508 (Ar-H or Ar (C=C)),
	1310, 1105 (C-O-C), 792 (Ar-H, δ)

Sinopodophyllum hexandrum and Diphylleia sinensis.

Quercetin ^b	3362, 3226 (O-H), 1653 (C=O), 1602, 1570 (Ar-H or Ar				
	(C=C)), 1331 (C-O-C), 794, 739 (Ar-H, δ)				
Vanillic acid ^b	3585 (O-H), 1753 (C=O), 1600, 1514 (Ar(C=C), 1272,				
	1156 (C-O), 765 (=C-H, δ)				
β-sitosterol ^b	3350 (О-Н), 2944, 2872 (С-Н), 1465, 1378 (С-Н, б), 1058				
	(C-O)				
4'-demethyldeoxy	3400 (O-H), 1758 (C=O), 1610, 1500 (Ar-H), 1220,1030				
podophyllotoxin ^e	(C-O-C), 925 (OCH ₂ O)				
8-isopentenyl kaempferol ^e	3360 (O-H), 2920 (=C-H), 1650 (C=O), 1610, 1505 (Ar-H				
	or Ar(C=C))				
Citrusinol ^e	3360 (О-Н), 2910, 1610, 1535				
4'-demethylpodophyllone ^e	3600~3400 (O-H), 1765 (C=O), 1612, 1520 (Ar(C=C)),				
	1505 (Ar-H), 1240, 1110 (C-O-C), 930 (OCH ₂ O)				
Hexacosanoic acid ^{<i>a</i>}	3600~3200 (О-Н), 2910 (С-Н), 2800 (С-Н), 1710 (С=О)				
^a Commom component of three herbs. ^b Mutual component of Dysosma versipellis and					
Sinopodophyllum hexandrum. ^c Specific component of Dysosma versipellis. ^d Mutual					
component of Dysosma versipellis and Diphylleia sinensis. ^e Specific component of					
Sinopodophyllum hexandrum.					

Synthetic Routes 1 (Quaternization)

Fig. S1 Synthetic routes of ILs

Fig. S2 FT-IR spectra of synthetic ILs